Metamath Proof Explorer


Theorem logltb

Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion logltb ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 relogiso ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ )
2 df-isom ( ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) ↔ ( ( log ↾ ℝ+ ) : ℝ+1-1-onto→ ℝ ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ) )
3 1 2 mpbi ( ( log ↾ ℝ+ ) : ℝ+1-1-onto→ ℝ ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) )
4 3 simpri 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) )
5 breq1 ( 𝑥 = 𝐴 → ( 𝑥 < 𝑦𝐴 < 𝑦 ) )
6 fveq2 ( 𝑥 = 𝐴 → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( ( log ↾ ℝ+ ) ‘ 𝐴 ) )
7 6 breq1d ( 𝑥 = 𝐴 → ( ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) )
8 5 7 bibi12d ( 𝑥 = 𝐴 → ( ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ↔ ( 𝐴 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ) )
9 breq2 ( 𝑦 = 𝐵 → ( 𝐴 < 𝑦𝐴 < 𝐵 ) )
10 fveq2 ( 𝑦 = 𝐵 → ( ( log ↾ ℝ+ ) ‘ 𝑦 ) = ( ( log ↾ ℝ+ ) ‘ 𝐵 ) )
11 10 breq2d ( 𝑦 = 𝐵 → ( ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) )
12 9 11 bibi12d ( 𝑦 = 𝐵 → ( ( 𝐴 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ↔ ( 𝐴 < 𝐵 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) ) )
13 8 12 rspc2v ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) → ( 𝐴 < 𝐵 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) ) )
14 4 13 mpi ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) )
15 fvres ( 𝐴 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝐴 ) = ( log ‘ 𝐴 ) )
16 fvres ( 𝐵 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝐵 ) = ( log ‘ 𝐵 ) )
17 15 16 breqan12d ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ↔ ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ) )
18 14 17 bitrd ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ) )