Description: The natural logarithm of negative 1 . (Contributed by Paul Chapman, 21-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | logm1 | ⊢ ( log ‘ - 1 ) = ( i · π ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1rp | ⊢ 1 ∈ ℝ+ | |
2 | logneg | ⊢ ( 1 ∈ ℝ+ → ( log ‘ - 1 ) = ( ( log ‘ 1 ) + ( i · π ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( log ‘ - 1 ) = ( ( log ‘ 1 ) + ( i · π ) ) |
4 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
5 | 4 | oveq1i | ⊢ ( ( log ‘ 1 ) + ( i · π ) ) = ( 0 + ( i · π ) ) |
6 | ax-icn | ⊢ i ∈ ℂ | |
7 | picn | ⊢ π ∈ ℂ | |
8 | 6 7 | mulcli | ⊢ ( i · π ) ∈ ℂ |
9 | 8 | addid2i | ⊢ ( 0 + ( i · π ) ) = ( i · π ) |
10 | 3 5 9 | 3eqtri | ⊢ ( log ‘ - 1 ) = ( i · π ) |