Metamath Proof Explorer


Theorem logm1

Description: The natural logarithm of negative 1 . (Contributed by Paul Chapman, 21-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)

Ref Expression
Assertion logm1 ( log ‘ - 1 ) = ( i · π )

Proof

Step Hyp Ref Expression
1 1rp 1 ∈ ℝ+
2 logneg ( 1 ∈ ℝ+ → ( log ‘ - 1 ) = ( ( log ‘ 1 ) + ( i · π ) ) )
3 1 2 ax-mp ( log ‘ - 1 ) = ( ( log ‘ 1 ) + ( i · π ) )
4 log1 ( log ‘ 1 ) = 0
5 4 oveq1i ( ( log ‘ 1 ) + ( i · π ) ) = ( 0 + ( i · π ) )
6 ax-icn i ∈ ℂ
7 picn π ∈ ℂ
8 6 7 mulcli ( i · π ) ∈ ℂ
9 8 addid2i ( 0 + ( i · π ) ) = ( i · π )
10 3 5 9 3eqtri ( log ‘ - 1 ) = ( i · π )