| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 3 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 4 |
3
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 6 |
|
efadd |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐵 ) ) ) ) |
| 7 |
2 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐵 ) ) ) ) |
| 8 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 10 |
|
reeflog |
⊢ ( 𝐵 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
| 12 |
9 11
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( log ‘ 𝐵 ) ) ) = ( 𝐴 · 𝐵 ) ) |
| 13 |
7 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) = ( 𝐴 · 𝐵 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( 𝐴 · 𝐵 ) ) ) |
| 15 |
|
logrncl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ran log ) |
| 17 |
|
logrnaddcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ran log ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ∈ ran log ) |
| 18 |
16 4 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ∈ ran log ) |
| 19 |
|
logef |
⊢ ( ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) |
| 21 |
14 20
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) |