Step |
Hyp |
Ref |
Expression |
1 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
picn |
⊢ π ∈ ℂ |
5 |
3 4
|
mulcli |
⊢ ( i · π ) ∈ ℂ |
6 |
|
efadd |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · π ) ) ) ) |
7 |
2 5 6
|
sylancl |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · π ) ) ) ) |
8 |
|
efipi |
⊢ ( exp ‘ ( i · π ) ) = - 1 |
9 |
8
|
oveq2i |
⊢ ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · - 1 ) |
10 |
|
reeflog |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
11 |
10
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( log ‘ 𝐴 ) ) · - 1 ) = ( 𝐴 · - 1 ) ) |
12 |
9 11
|
eqtrid |
⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · π ) ) ) = ( 𝐴 · - 1 ) ) |
13 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
14 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
15 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) |
16 |
13 14 15
|
sylancl |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) |
17 |
13
|
mulm1d |
⊢ ( 𝐴 ∈ ℝ+ → ( - 1 · 𝐴 ) = - 𝐴 ) |
18 |
16 17
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · - 1 ) = - 𝐴 ) |
19 |
7 12 18
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = - 𝐴 ) |
20 |
19
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ) = ( log ‘ - 𝐴 ) ) |
21 |
|
addcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ℂ ) |
22 |
2 5 21
|
sylancl |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ℂ ) |
23 |
|
pipos |
⊢ 0 < π |
24 |
|
pire |
⊢ π ∈ ℝ |
25 |
|
lt0neg2 |
⊢ ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) ) |
26 |
24 25
|
ax-mp |
⊢ ( 0 < π ↔ - π < 0 ) |
27 |
23 26
|
mpbi |
⊢ - π < 0 |
28 |
24
|
renegcli |
⊢ - π ∈ ℝ |
29 |
|
0re |
⊢ 0 ∈ ℝ |
30 |
28 29 24
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
31 |
27 23 30
|
mp2an |
⊢ - π < π |
32 |
|
crim |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = π ) |
33 |
1 24 32
|
sylancl |
⊢ ( 𝐴 ∈ ℝ+ → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) = π ) |
34 |
31 33
|
breqtrrid |
⊢ ( 𝐴 ∈ ℝ+ → - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ) |
35 |
24
|
leidi |
⊢ π ≤ π |
36 |
33 35
|
eqbrtrdi |
⊢ ( 𝐴 ∈ ℝ+ → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ≤ π ) |
37 |
|
ellogrn |
⊢ ( ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ≤ π ) ) |
38 |
22 34 36 37
|
syl3anbrc |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ran log ) |
39 |
|
logef |
⊢ ( ( ( log ‘ 𝐴 ) + ( i · π ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) + ( i · π ) ) ) |
40 |
38 39
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) + ( i · π ) ) ) |
41 |
20 40
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ - 𝐴 ) = ( ( log ‘ 𝐴 ) + ( i · π ) ) ) |