Step |
Hyp |
Ref |
Expression |
1 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
2 |
|
gt0ne0 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
4 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 0 ) ) |
5 |
|
im0 |
⊢ ( ℑ ‘ 0 ) = 0 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = 0 ) |
7 |
6
|
necon3i |
⊢ ( ( ℑ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
8 |
3 7
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ≠ 0 ) |
9 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
10 |
8 9
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
11 |
|
ax-icn |
⊢ i ∈ ℂ |
12 |
|
picn |
⊢ π ∈ ℂ |
13 |
11 12
|
mulcli |
⊢ ( i · π ) ∈ ℂ |
14 |
|
efsub |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) ) |
15 |
10 13 14
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) ) |
16 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
17 |
8 16
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
18 |
|
efipi |
⊢ ( exp ‘ ( i · π ) ) = - 1 |
19 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( i · π ) ) = - 1 ) |
20 |
17 19
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) = ( 𝐴 / - 1 ) ) |
21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
22 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
23 |
|
divneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 𝐴 / 1 ) = ( 𝐴 / - 1 ) ) |
24 |
21 22 23
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 1 ) = ( 𝐴 / - 1 ) ) |
25 |
|
div1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) |
26 |
25
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 1 ) = - 𝐴 ) |
27 |
24 26
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / - 1 ) = - 𝐴 ) |
28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 𝐴 / - 1 ) = - 𝐴 ) |
29 |
15 20 28
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = - 𝐴 ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( log ‘ - 𝐴 ) ) |
31 |
|
subcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ) |
32 |
10 13 31
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ) |
33 |
|
argimgt0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |
34 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
36 |
35
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
37 |
|
imcl |
⊢ ( ( log ‘ 𝐴 ) ∈ ℂ → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
38 |
10 37
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
39 |
|
pire |
⊢ π ∈ ℝ |
40 |
39
|
renegcli |
⊢ - π ∈ ℝ |
41 |
|
ltaddpos2 |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - π ∈ ℝ ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) ) |
42 |
38 40 41
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) ) |
43 |
36 42
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) |
44 |
38
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
45 |
|
negsub |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ π ∈ ℂ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
46 |
44 12 45
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
47 |
43 46
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
48 |
|
imsub |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) ) |
49 |
10 13 48
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) ) |
50 |
|
reim |
⊢ ( π ∈ ℂ → ( ℜ ‘ π ) = ( ℑ ‘ ( i · π ) ) ) |
51 |
12 50
|
ax-mp |
⊢ ( ℜ ‘ π ) = ( ℑ ‘ ( i · π ) ) |
52 |
|
rere |
⊢ ( π ∈ ℝ → ( ℜ ‘ π ) = π ) |
53 |
39 52
|
ax-mp |
⊢ ( ℜ ‘ π ) = π |
54 |
51 53
|
eqtr3i |
⊢ ( ℑ ‘ ( i · π ) ) = π |
55 |
54
|
oveq2i |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) |
56 |
49 55
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
57 |
47 56
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) |
58 |
|
resubcl |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ∈ ℝ ) |
59 |
38 39 58
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ∈ ℝ ) |
60 |
39
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ∈ ℝ ) |
61 |
|
0re |
⊢ 0 ∈ ℝ |
62 |
|
pipos |
⊢ 0 < π |
63 |
61 39 62
|
ltleii |
⊢ 0 ≤ π |
64 |
|
subge02 |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( 0 ≤ π ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
65 |
38 39 64
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 ≤ π ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
66 |
63 65
|
mpbii |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
67 |
|
logimcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
68 |
8 67
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
69 |
68
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
70 |
59 38 60 66 69
|
letrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ π ) |
71 |
56 70
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ≤ π ) |
72 |
|
ellogrn |
⊢ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ≤ π ) ) |
73 |
32 57 71 72
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log ) |
74 |
|
logef |
⊢ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |
75 |
73 74
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |
76 |
30 75
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ - 𝐴 ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |