| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
|
gt0ne0 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 4 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 0 ) ) |
| 5 |
|
im0 |
⊢ ( ℑ ‘ 0 ) = 0 |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = 0 ) |
| 7 |
6
|
necon3i |
⊢ ( ( ℑ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 8 |
3 7
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ≠ 0 ) |
| 9 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
8 9
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 11 |
|
ax-icn |
⊢ i ∈ ℂ |
| 12 |
|
picn |
⊢ π ∈ ℂ |
| 13 |
11 12
|
mulcli |
⊢ ( i · π ) ∈ ℂ |
| 14 |
|
efsub |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) ) |
| 15 |
10 13 14
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) ) |
| 16 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 17 |
8 16
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 18 |
|
efipi |
⊢ ( exp ‘ ( i · π ) ) = - 1 |
| 19 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( i · π ) ) = - 1 ) |
| 20 |
17 19
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( i · π ) ) ) = ( 𝐴 / - 1 ) ) |
| 21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 22 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 23 |
|
divneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 𝐴 / 1 ) = ( 𝐴 / - 1 ) ) |
| 24 |
21 22 23
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 1 ) = ( 𝐴 / - 1 ) ) |
| 25 |
|
div1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) |
| 26 |
25
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 1 ) = - 𝐴 ) |
| 27 |
24 26
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / - 1 ) = - 𝐴 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 𝐴 / - 1 ) = - 𝐴 ) |
| 29 |
15 20 28
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = - 𝐴 ) |
| 30 |
29
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( log ‘ - 𝐴 ) ) |
| 31 |
|
subcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ) |
| 32 |
10 13 31
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ) |
| 33 |
|
argimgt0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |
| 34 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 36 |
35
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 37 |
|
imcl |
⊢ ( ( log ‘ 𝐴 ) ∈ ℂ → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 38 |
10 37
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 39 |
|
pire |
⊢ π ∈ ℝ |
| 40 |
39
|
renegcli |
⊢ - π ∈ ℝ |
| 41 |
|
ltaddpos2 |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - π ∈ ℝ ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) ) |
| 42 |
38 40 41
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) ) |
| 43 |
36 42
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) ) |
| 44 |
38
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 45 |
|
negsub |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ π ∈ ℂ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
| 46 |
44 12 45
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + - π ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
| 47 |
43 46
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
| 48 |
|
imsub |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · π ) ∈ ℂ ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) ) |
| 49 |
10 13 48
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) ) |
| 50 |
|
reim |
⊢ ( π ∈ ℂ → ( ℜ ‘ π ) = ( ℑ ‘ ( i · π ) ) ) |
| 51 |
12 50
|
ax-mp |
⊢ ( ℜ ‘ π ) = ( ℑ ‘ ( i · π ) ) |
| 52 |
|
rere |
⊢ ( π ∈ ℝ → ( ℜ ‘ π ) = π ) |
| 53 |
39 52
|
ax-mp |
⊢ ( ℜ ‘ π ) = π |
| 54 |
51 53
|
eqtr3i |
⊢ ( ℑ ‘ ( i · π ) ) = π |
| 55 |
54
|
oveq2i |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − ( ℑ ‘ ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) |
| 56 |
49 55
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ) |
| 57 |
47 56
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) |
| 58 |
|
resubcl |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ∈ ℝ ) |
| 59 |
38 39 58
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ∈ ℝ ) |
| 60 |
39
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ∈ ℝ ) |
| 61 |
|
0re |
⊢ 0 ∈ ℝ |
| 62 |
|
pipos |
⊢ 0 < π |
| 63 |
61 39 62
|
ltleii |
⊢ 0 ≤ π |
| 64 |
|
subge02 |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( 0 ≤ π ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 65 |
38 39 64
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 ≤ π ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 66 |
63 65
|
mpbii |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 67 |
|
logimcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 68 |
8 67
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 69 |
68
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 70 |
59 38 60 66 69
|
letrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) − π ) ≤ π ) |
| 71 |
56 70
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ≤ π ) |
| 72 |
|
ellogrn |
⊢ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ≤ π ) ) |
| 73 |
32 57 71 72
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log ) |
| 74 |
|
logef |
⊢ ( ( ( log ‘ 𝐴 ) − ( i · π ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |
| 75 |
73 74
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( i · π ) ) ) ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |
| 76 |
30 75
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ - 𝐴 ) = ( ( log ‘ 𝐴 ) − ( i · π ) ) ) |