Step |
Hyp |
Ref |
Expression |
1 |
|
logneg |
⊢ ( - 𝐴 ∈ ℝ+ → ( log ‘ - - 𝐴 ) = ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) |
2 |
1
|
fveq2d |
⊢ ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) ) |
3 |
|
relogcl |
⊢ ( - 𝐴 ∈ ℝ+ → ( log ‘ - 𝐴 ) ∈ ℝ ) |
4 |
|
pire |
⊢ π ∈ ℝ |
5 |
|
crim |
⊢ ( ( ( log ‘ - 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) = π ) |
6 |
3 4 5
|
sylancl |
⊢ ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) = π ) |
7 |
2 6
|
eqtrd |
⊢ ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = π ) |
8 |
|
negneg |
⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - - 𝐴 = 𝐴 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ - - 𝐴 ) = ( log ‘ 𝐴 ) ) |
11 |
10
|
fveqeq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = π ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
12 |
7 11
|
syl5ib |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
13 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
14 |
13
|
replimd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) = ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
16 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
17 |
13
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
18 |
17
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
19 |
|
ax-icn |
⊢ i ∈ ℂ |
20 |
13
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
22 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
23 |
19 21 22
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
24 |
|
efadd |
⊢ ( ( ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
25 |
18 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
26 |
15 16 25
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
27 |
|
oveq2 |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( i · π ) ) |
28 |
27
|
fveq2d |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( i · π ) ) ) |
29 |
|
efipi |
⊢ ( exp ‘ ( i · π ) ) = - 1 |
30 |
28 29
|
eqtrdi |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = - 1 ) |
31 |
30
|
oveq2d |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) |
32 |
31
|
eqeq2d |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ↔ 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) ) |
33 |
26 32
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) ) |
34 |
17
|
rpefcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
35 |
34
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
36 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
37 |
|
mulcom |
⊢ ( ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
38 |
35 36 37
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
39 |
35
|
mulm1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
40 |
38 39
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
41 |
40
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = - - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
42 |
35
|
negnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
43 |
41 42
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
44 |
43 34
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ∈ ℝ+ ) |
45 |
|
negeq |
⊢ ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → - 𝐴 = - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) |
46 |
45
|
eleq1d |
⊢ ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → ( - 𝐴 ∈ ℝ+ ↔ - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ∈ ℝ+ ) ) |
47 |
44 46
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → - 𝐴 ∈ ℝ+ ) ) |
48 |
33 47
|
syld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → - 𝐴 ∈ ℝ+ ) ) |
49 |
12 48
|
impbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |