Metamath Proof Explorer


Theorem lognegb

Description: If a number has imaginary part equal to _pi , then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Assertion lognegb ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) )

Proof

Step Hyp Ref Expression
1 logneg ( - 𝐴 ∈ ℝ+ → ( log ‘ - - 𝐴 ) = ( ( log ‘ - 𝐴 ) + ( i · π ) ) )
2 1 fveq2d ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) )
3 relogcl ( - 𝐴 ∈ ℝ+ → ( log ‘ - 𝐴 ) ∈ ℝ )
4 pire π ∈ ℝ
5 crim ( ( ( log ‘ - 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) = π )
6 3 4 5 sylancl ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) = π )
7 2 6 eqtrd ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = π )
8 negneg ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 )
9 8 adantr ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - - 𝐴 = 𝐴 )
10 9 fveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ - - 𝐴 ) = ( log ‘ 𝐴 ) )
11 10 fveqeq2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = π ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) )
12 7 11 syl5ib ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) )
13 logcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ )
14 13 replimd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) = ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
15 14 fveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
16 eflog ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 )
17 13 recld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ )
18 17 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ )
19 ax-icn i ∈ ℂ
20 13 imcld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ )
21 20 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ )
22 mulcl ( ( i ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ )
23 19 21 22 sylancr ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ )
24 efadd ( ( ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
25 18 23 24 syl2anc ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
26 15 16 25 3eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
27 oveq2 ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( i · π ) )
28 27 fveq2d ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( i · π ) ) )
29 efipi ( exp ‘ ( i · π ) ) = - 1
30 28 29 eqtrdi ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = - 1 )
31 30 oveq2d ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) )
32 31 eqeq2d ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ↔ 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) )
33 26 32 syl5ibcom ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) )
34 17 rpefcld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ+ )
35 34 rpcnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ )
36 neg1cn - 1 ∈ ℂ
37 mulcom ( ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) )
38 35 36 37 sylancl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) )
39 35 mulm1d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) )
40 38 39 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) )
41 40 negeqd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = - - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) )
42 35 negnegd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) )
43 41 42 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) )
44 43 34 eqeltrd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ∈ ℝ+ )
45 negeq ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → - 𝐴 = - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) )
46 45 eleq1d ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → ( - 𝐴 ∈ ℝ+ ↔ - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ∈ ℝ+ ) )
47 44 46 syl5ibrcom ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → - 𝐴 ∈ ℝ+ ) )
48 33 47 syld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → - 𝐴 ∈ ℝ+ ) )
49 12 48 impbid ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) )