| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore | ⊢ ( 𝑦  ∈  ( 1 (,) +∞ )  →  𝑦  ∈  ℝ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  𝑦  ∈  ℝ ) | 
						
							| 3 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 4 | 3 | a1i | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 5 |  | 1red | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 6 |  | eliooord | ⊢ ( 𝑦  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑦  ∧  𝑦  <  +∞ ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  ( 1  <  𝑦  ∧  𝑦  <  +∞ ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  1  <  𝑦 ) | 
						
							| 9 | 5 2 8 | ltled | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  1  ≤  𝑦 ) | 
						
							| 10 | 2 4 9 | rpgecld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 11 | 10 | ex | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  ( 𝑦  ∈  ( 1 (,) +∞ )  →  𝑦  ∈  ℝ+ ) ) | 
						
							| 12 | 11 | ssrdv | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  ( 1 (,) +∞ )  ⊆  ℝ+ ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( log ‘ 𝑥 )  =  ( log ‘ 𝑦 ) ) | 
						
							| 14 | 13 | cbvmptv | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  =  ( 𝑦  ∈  ℝ+  ↦  ( log ‘ 𝑦 ) ) | 
						
							| 15 | 14 | eleq1i | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ↔  ( 𝑦  ∈  ℝ+  ↦  ( log ‘ 𝑦 ) )  ∈  𝑂(1) ) | 
						
							| 16 | 15 | biimpi | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  ( 𝑦  ∈  ℝ+  ↦  ( log ‘ 𝑦 ) )  ∈  𝑂(1) ) | 
						
							| 17 | 12 16 | o1res2 | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  ( 𝑦  ∈  ( 1 (,) +∞ )  ↦  ( log ‘ 𝑦 ) )  ∈  𝑂(1) ) | 
						
							| 18 |  | 1red | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  1  ∈  ℝ ) | 
						
							| 19 | 18 | rexrd | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  1  ∈  ℝ* ) | 
						
							| 20 | 18 | renepnfd | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  1  ≠  +∞ ) | 
						
							| 21 |  | ioopnfsup | ⊢ ( ( 1  ∈  ℝ*  ∧  1  ≠  +∞ )  →  sup ( ( 1 (,) +∞ ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  sup ( ( 1 (,) +∞ ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 23 |  | divlogrlim | ⊢ ( 𝑦  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑦 ) ) )  ⇝𝑟  0 | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  ( 𝑦  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑦 ) ) )  ⇝𝑟  0 ) | 
						
							| 25 | 2 8 | rplogcld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑦 )  ∈  ℝ+ ) | 
						
							| 26 | 25 | rpcnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 27 | 25 | rpne0d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  ∧  𝑦  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑦 )  ≠  0 ) | 
						
							| 28 | 22 24 26 27 | rlimno1 | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1)  →  ¬  ( 𝑦  ∈  ( 1 (,) +∞ )  ↦  ( log ‘ 𝑦 ) )  ∈  𝑂(1) ) | 
						
							| 29 | 17 28 | pm2.65i | ⊢ ¬  ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) )  ∈  𝑂(1) |