Step |
Hyp |
Ref |
Expression |
1 |
|
elioore |
⊢ ( 𝑦 ∈ ( 1 (,) +∞ ) → 𝑦 ∈ ℝ ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 𝑦 ∈ ℝ ) |
3 |
|
1rp |
⊢ 1 ∈ ℝ+ |
4 |
3
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ ) |
5 |
|
1red |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ ) |
6 |
|
eliooord |
⊢ ( 𝑦 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑦 ∧ 𝑦 < +∞ ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑦 ∧ 𝑦 < +∞ ) ) |
8 |
7
|
simpld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑦 ) |
9 |
5 2 8
|
ltled |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑦 ) |
10 |
2 4 9
|
rpgecld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → 𝑦 ∈ ℝ+ ) |
11 |
10
|
ex |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 𝑦 ∈ ( 1 (,) +∞ ) → 𝑦 ∈ ℝ+ ) ) |
12 |
11
|
ssrdv |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 1 (,) +∞ ) ⊆ ℝ+ ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( log ‘ 𝑥 ) = ( log ‘ 𝑦 ) ) |
14 |
13
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) = ( 𝑦 ∈ ℝ+ ↦ ( log ‘ 𝑦 ) ) |
15 |
14
|
eleq1i |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ↔ ( 𝑦 ∈ ℝ+ ↦ ( log ‘ 𝑦 ) ) ∈ 𝑂(1) ) |
16 |
15
|
biimpi |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 𝑦 ∈ ℝ+ ↦ ( log ‘ 𝑦 ) ) ∈ 𝑂(1) ) |
17 |
12 16
|
o1res2 |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 𝑦 ∈ ( 1 (,) +∞ ) ↦ ( log ‘ 𝑦 ) ) ∈ 𝑂(1) ) |
18 |
|
1red |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → 1 ∈ ℝ ) |
19 |
18
|
rexrd |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → 1 ∈ ℝ* ) |
20 |
18
|
renepnfd |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → 1 ≠ +∞ ) |
21 |
|
ioopnfsup |
⊢ ( ( 1 ∈ ℝ* ∧ 1 ≠ +∞ ) → sup ( ( 1 (,) +∞ ) , ℝ* , < ) = +∞ ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → sup ( ( 1 (,) +∞ ) , ℝ* , < ) = +∞ ) |
23 |
|
divlogrlim |
⊢ ( 𝑦 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑦 ) ) ) ⇝𝑟 0 |
24 |
23
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ( 𝑦 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑦 ) ) ) ⇝𝑟 0 ) |
25 |
2 8
|
rplogcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑦 ) ∈ ℝ+ ) |
26 |
25
|
rpcnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
27 |
25
|
rpne0d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ∧ 𝑦 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑦 ) ≠ 0 ) |
28 |
22 24 26 27
|
rlimno1 |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) → ¬ ( 𝑦 ∈ ( 1 (,) +∞ ) ↦ ( log ‘ 𝑦 ) ) ∈ 𝑂(1) ) |
29 |
17 28
|
pm2.65i |
⊢ ¬ ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) |