Step |
Hyp |
Ref |
Expression |
1 |
|
df-log |
⊢ log = ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) |
2 |
1
|
rneqi |
⊢ ran log = ran ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) |
3 |
|
eqid |
⊢ ( ◡ ℑ “ ( - π (,] π ) ) = ( ◡ ℑ “ ( - π (,] π ) ) |
4 |
3
|
eff1o |
⊢ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) –1-1-onto→ ( ℂ ∖ { 0 } ) |
5 |
|
f1ocnv |
⊢ ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) –1-1-onto→ ( ℂ ∖ { 0 } ) → ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ( ◡ ℑ “ ( - π (,] π ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ( ◡ ℑ “ ( - π (,] π ) ) |
7 |
|
f1ofo |
⊢ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ( ◡ ℑ “ ( - π (,] π ) ) → ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –onto→ ( ◡ ℑ “ ( - π (,] π ) ) ) |
8 |
|
forn |
⊢ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ℂ ∖ { 0 } ) –onto→ ( ◡ ℑ “ ( - π (,] π ) ) → ran ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) = ( ◡ ℑ “ ( - π (,] π ) ) ) |
9 |
6 7 8
|
mp2b |
⊢ ran ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) = ( ◡ ℑ “ ( - π (,] π ) ) |
10 |
2 9
|
eqtri |
⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) |