Description: Closure of the natural logarithm function. (Contributed by Paul Chapman, 21-Apr-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | logrncl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) | |
2 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
3 | f1of | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) | |
4 | 2 3 | ax-mp | ⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
5 | 4 | ffvelrni | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝐴 ) ∈ ran log ) |
6 | 1 5 | sylbir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log ) |