Metamath Proof Explorer


Theorem logrncl

Description: Closure of the natural logarithm function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion logrncl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) )
2 logf1o log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log
3 f1of ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log )
4 2 3 ax-mp log : ( ℂ ∖ { 0 } ) ⟶ ran log
5 4 ffvelrni ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝐴 ) ∈ ran log )
6 1 5 sylbir ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log )