Step |
Hyp |
Ref |
Expression |
1 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
2cn |
⊢ 2 ∈ ℂ |
4 |
|
2ne0 |
⊢ 2 ≠ 0 |
5 |
|
divrec2 |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( log ‘ 𝐴 ) / 2 ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) |
6 |
3 4 5
|
mp3an23 |
⊢ ( ( log ‘ 𝐴 ) ∈ ℂ → ( ( log ‘ 𝐴 ) / 2 ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) |
7 |
2 6
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) / 2 ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) |
8 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
9 |
|
logcxp |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 1 / 2 ) ∈ ℝ ) → ( log ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( ( 1 / 2 ) · ( log ‘ 𝐴 ) ) ) |
11 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
12 |
|
cxpsqrt |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 𝐴 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 𝐴 ↑𝑐 ( 1 / 2 ) ) ) = ( log ‘ ( √ ‘ 𝐴 ) ) ) |
15 |
7 10 14
|
3eqtr2rd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( √ ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) / 2 ) ) |