Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) |
2 |
|
dvdsssfz1 |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
3 |
1 2
|
ssfid |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∈ Fin ) |
4 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... 𝑑 ) ∈ Fin ) |
5 |
|
elrabi |
⊢ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → 𝑑 ∈ ℕ ) |
6 |
5
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑑 ∈ ℕ ) |
7 |
|
dvdsssfz1 |
⊢ ( 𝑑 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ⊆ ( 1 ... 𝑑 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ⊆ ( 1 ... 𝑑 ) ) |
9 |
4 8
|
ssfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ∈ Fin ) |
10 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } → 𝑢 ∈ ℕ ) |
11 |
10
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → 𝑢 ∈ ℕ ) |
12 |
|
vmacl |
⊢ ( 𝑢 ∈ ℕ → ( Λ ‘ 𝑢 ) ∈ ℝ ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( Λ ‘ 𝑢 ) ∈ ℝ ) |
14 |
|
breq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ∥ 𝑑 ↔ 𝑢 ∥ 𝑑 ) ) |
15 |
14
|
elrab |
⊢ ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ↔ ( 𝑢 ∈ ℕ ∧ 𝑢 ∥ 𝑑 ) ) |
16 |
15
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } → 𝑢 ∥ 𝑑 ) |
17 |
16
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → 𝑢 ∥ 𝑑 ) |
18 |
5
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → 𝑑 ∈ ℕ ) |
19 |
|
nndivdvds |
⊢ ( ( 𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ ) → ( 𝑢 ∥ 𝑑 ↔ ( 𝑑 / 𝑢 ) ∈ ℕ ) ) |
20 |
18 11 19
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( 𝑢 ∥ 𝑑 ↔ ( 𝑑 / 𝑢 ) ∈ ℕ ) ) |
21 |
17 20
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( 𝑑 / 𝑢 ) ∈ ℕ ) |
22 |
|
vmacl |
⊢ ( ( 𝑑 / 𝑢 ) ∈ ℕ → ( Λ ‘ ( 𝑑 / 𝑢 ) ) ∈ ℝ ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( Λ ‘ ( 𝑑 / 𝑢 ) ) ∈ ℝ ) |
24 |
13 23
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℝ ) |
25 |
24
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ ) |
26 |
25
|
anassrs |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ ) |
27 |
9 26
|
fsumcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ ) |
28 |
|
vmacl |
⊢ ( 𝑑 ∈ ℕ → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
29 |
6 28
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
30 |
6
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑑 ∈ ℝ+ ) |
31 |
30
|
relogcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ 𝑑 ) ∈ ℝ ) |
32 |
29 31
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℝ ) |
33 |
32
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℂ ) |
34 |
3 27 33
|
fsumadd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
35 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
36 |
|
fvoveq1 |
⊢ ( 𝑑 = ( 𝑢 · 𝑘 ) → ( Λ ‘ ( 𝑑 / 𝑢 ) ) = ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑑 = ( 𝑢 · 𝑘 ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) ) |
38 |
35 37 25
|
fsumdvdscom |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) ) |
39 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ℕ |
40 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) |
41 |
39 40
|
sselid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ ℕ ) |
42 |
41
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ ℂ ) |
43 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ |
44 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
45 |
43 44
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℕ ) |
46 |
45
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℂ ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑢 ∈ ℂ ) |
48 |
45
|
nnne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ≠ 0 ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑢 ≠ 0 ) |
50 |
42 47 49
|
divcan3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( ( 𝑢 · 𝑘 ) / 𝑢 ) = 𝑘 ) |
51 |
50
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = ( Λ ‘ 𝑘 ) ) |
52 |
51
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) ) |
53 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑢 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
54 |
43 53
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑢 ) ∈ ℕ ) |
55 |
|
vmasum |
⊢ ( ( 𝑁 / 𝑢 ) ∈ ℕ → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) = ( log ‘ ( 𝑁 / 𝑢 ) ) ) |
56 |
54 55
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) = ( log ‘ ( 𝑁 / 𝑢 ) ) ) |
57 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
58 |
57
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑁 ∈ ℝ+ ) |
59 |
45
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℝ+ ) |
60 |
58 59
|
relogdivd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ ( 𝑁 / 𝑢 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) |
61 |
52 56 60
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) |
62 |
61
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = ( ( Λ ‘ 𝑢 ) · ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) ) |
63 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... ( 𝑁 / 𝑢 ) ) ∈ Fin ) |
64 |
|
dvdsssfz1 |
⊢ ( ( 𝑁 / 𝑢 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ( 1 ... ( 𝑁 / 𝑢 ) ) ) |
65 |
54 64
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ( 1 ... ( 𝑁 / 𝑢 ) ) ) |
66 |
63 65
|
ssfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ∈ Fin ) |
67 |
45 12
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( Λ ‘ 𝑢 ) ∈ ℝ ) |
68 |
67
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( Λ ‘ 𝑢 ) ∈ ℂ ) |
69 |
|
vmacl |
⊢ ( 𝑘 ∈ ℕ → ( Λ ‘ 𝑘 ) ∈ ℝ ) |
70 |
41 69
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ 𝑘 ) ∈ ℝ ) |
71 |
70
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ 𝑘 ) ∈ ℂ ) |
72 |
51 71
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ∈ ℂ ) |
73 |
66 68 72
|
fsummulc2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) ) |
74 |
|
relogcl |
⊢ ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℝ ) |
75 |
74
|
recnd |
⊢ ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℂ ) |
76 |
58 75
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ 𝑁 ) ∈ ℂ ) |
77 |
59
|
relogcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ 𝑢 ) ∈ ℝ ) |
78 |
77
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ 𝑢 ) ∈ ℂ ) |
79 |
68 76 78
|
subdid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) = ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) ) |
80 |
62 73 79
|
3eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) ) |
81 |
80
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) ) |
82 |
68 76
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
83 |
68 78
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ∈ ℂ ) |
84 |
3 82 83
|
fsumsub |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) ) |
85 |
57 75
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℂ ) |
86 |
85
|
sqvald |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ 𝑁 ) ↑ 2 ) = ( ( log ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) |
87 |
|
vmasum |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Λ ‘ 𝑢 ) = ( log ‘ 𝑁 ) ) |
88 |
87
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = ( ( log ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) |
89 |
3 85 68
|
fsummulc1 |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) ) |
90 |
86 88 89
|
3eqtr2rd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) ) |
91 |
|
fveq2 |
⊢ ( 𝑢 = 𝑑 → ( Λ ‘ 𝑢 ) = ( Λ ‘ 𝑑 ) ) |
92 |
|
fveq2 |
⊢ ( 𝑢 = 𝑑 → ( log ‘ 𝑢 ) = ( log ‘ 𝑑 ) ) |
93 |
91 92
|
oveq12d |
⊢ ( 𝑢 = 𝑑 → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) |
94 |
93
|
cbvsumv |
⊢ Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) |
95 |
94
|
a1i |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) |
96 |
90 95
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
97 |
84 96
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
98 |
38 81 97
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
99 |
98
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
100 |
85
|
sqcld |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ 𝑁 ) ↑ 2 ) ∈ ℂ ) |
101 |
3 33
|
fsumcl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℂ ) |
102 |
100 101
|
npcand |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) ) |
103 |
34 99 102
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) ) |