Metamath Proof Explorer


Theorem logsqvma

Description: A formula for log ^ 2 ( N ) in terms of the primes. Equation 10.4.6 of Shapiro, p. 418. (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Assertion logsqvma ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 fzfid ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin )
2 dvdsssfz1 ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ⊆ ( 1 ... 𝑁 ) )
3 1 2 ssfid ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∈ Fin )
4 fzfid ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 1 ... 𝑑 ) ∈ Fin )
5 elrabi ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } → 𝑑 ∈ ℕ )
6 5 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑑 ∈ ℕ )
7 dvdsssfz1 ( 𝑑 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ⊆ ( 1 ... 𝑑 ) )
8 6 7 syl ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ⊆ ( 1 ... 𝑑 ) )
9 4 8 ssfid ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ∈ Fin )
10 elrabi ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } → 𝑢 ∈ ℕ )
11 10 ad2antll ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → 𝑢 ∈ ℕ )
12 vmacl ( 𝑢 ∈ ℕ → ( Λ ‘ 𝑢 ) ∈ ℝ )
13 11 12 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → ( Λ ‘ 𝑢 ) ∈ ℝ )
14 breq1 ( 𝑥 = 𝑢 → ( 𝑥𝑑𝑢𝑑 ) )
15 14 elrab ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ↔ ( 𝑢 ∈ ℕ ∧ 𝑢𝑑 ) )
16 15 simprbi ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } → 𝑢𝑑 )
17 16 ad2antll ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → 𝑢𝑑 )
18 5 ad2antrl ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → 𝑑 ∈ ℕ )
19 nndivdvds ( ( 𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ ) → ( 𝑢𝑑 ↔ ( 𝑑 / 𝑢 ) ∈ ℕ ) )
20 18 11 19 syl2anc ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → ( 𝑢𝑑 ↔ ( 𝑑 / 𝑢 ) ∈ ℕ ) )
21 17 20 mpbid ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → ( 𝑑 / 𝑢 ) ∈ ℕ )
22 vmacl ( ( 𝑑 / 𝑢 ) ∈ ℕ → ( Λ ‘ ( 𝑑 / 𝑢 ) ) ∈ ℝ )
23 21 22 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → ( Λ ‘ ( 𝑑 / 𝑢 ) ) ∈ ℝ )
24 13 23 remulcld ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℝ )
25 24 recnd ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ )
26 25 anassrs ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ )
27 9 26 fsumcl ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ )
28 vmacl ( 𝑑 ∈ ℕ → ( Λ ‘ 𝑑 ) ∈ ℝ )
29 6 28 syl ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( Λ ‘ 𝑑 ) ∈ ℝ )
30 6 nnrpd ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑑 ∈ ℝ+ )
31 30 relogcld ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( log ‘ 𝑑 ) ∈ ℝ )
32 29 31 remulcld ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℝ )
33 32 recnd ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℂ )
34 3 27 33 fsumadd ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) )
35 id ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ )
36 fvoveq1 ( 𝑑 = ( 𝑢 · 𝑘 ) → ( Λ ‘ ( 𝑑 / 𝑢 ) ) = ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) )
37 36 oveq2d ( 𝑑 = ( 𝑢 · 𝑘 ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) )
38 35 37 25 fsumdvdscom ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) )
39 ssrab2 { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ℕ
40 simpr ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } )
41 39 40 sselid ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ ℕ )
42 41 nncnd ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ ℂ )
43 ssrab2 { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ⊆ ℕ
44 simpr ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
45 43 44 sselid ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑢 ∈ ℕ )
46 45 nncnd ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑢 ∈ ℂ )
47 46 adantr ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑢 ∈ ℂ )
48 45 nnne0d ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑢 ≠ 0 )
49 48 adantr ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑢 ≠ 0 )
50 42 47 49 divcan3d ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( ( 𝑢 · 𝑘 ) / 𝑢 ) = 𝑘 )
51 50 fveq2d ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = ( Λ ‘ 𝑘 ) )
52 51 sumeq2dv ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) )
53 dvdsdivcl ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 𝑁 / 𝑢 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
54 43 53 sselid ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 𝑁 / 𝑢 ) ∈ ℕ )
55 vmasum ( ( 𝑁 / 𝑢 ) ∈ ℕ → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) = ( log ‘ ( 𝑁 / 𝑢 ) ) )
56 54 55 syl ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) = ( log ‘ ( 𝑁 / 𝑢 ) ) )
57 nnrp ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ )
58 57 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑁 ∈ ℝ+ )
59 45 nnrpd ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → 𝑢 ∈ ℝ+ )
60 58 59 relogdivd ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( log ‘ ( 𝑁 / 𝑢 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) )
61 52 56 60 3eqtrd ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) )
62 61 oveq2d ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( ( Λ ‘ 𝑢 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = ( ( Λ ‘ 𝑢 ) · ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) )
63 fzfid ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( 1 ... ( 𝑁 / 𝑢 ) ) ∈ Fin )
64 dvdsssfz1 ( ( 𝑁 / 𝑢 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ( 1 ... ( 𝑁 / 𝑢 ) ) )
65 54 64 syl ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ( 1 ... ( 𝑁 / 𝑢 ) ) )
66 63 65 ssfid ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ∈ Fin )
67 45 12 syl ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( Λ ‘ 𝑢 ) ∈ ℝ )
68 67 recnd ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( Λ ‘ 𝑢 ) ∈ ℂ )
69 vmacl ( 𝑘 ∈ ℕ → ( Λ ‘ 𝑘 ) ∈ ℝ )
70 41 69 syl ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ 𝑘 ) ∈ ℝ )
71 70 recnd ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ 𝑘 ) ∈ ℂ )
72 51 71 eqeltrd ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ∈ ℂ )
73 66 68 72 fsummulc2 ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( ( Λ ‘ 𝑢 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) )
74 relogcl ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℝ )
75 74 recnd ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℂ )
76 58 75 syl ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( log ‘ 𝑁 ) ∈ ℂ )
77 59 relogcld ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( log ‘ 𝑢 ) ∈ ℝ )
78 77 recnd ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( log ‘ 𝑢 ) ∈ ℂ )
79 68 76 78 subdid ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) = ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) )
80 62 73 79 3eqtr3d ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) )
81 80 sumeq2dv ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) )
82 68 76 mulcld ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) ∈ ℂ )
83 68 78 mulcld ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ∈ ℂ )
84 3 82 83 fsumsub ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) )
85 57 75 syl ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℂ )
86 85 sqvald ( 𝑁 ∈ ℕ → ( ( log ‘ 𝑁 ) ↑ 2 ) = ( ( log ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) )
87 vmasum ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( Λ ‘ 𝑢 ) = ( log ‘ 𝑁 ) )
88 87 oveq1d ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = ( ( log ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) )
89 3 85 68 fsummulc1 ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) )
90 86 88 89 3eqtr2rd ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) )
91 fveq2 ( 𝑢 = 𝑑 → ( Λ ‘ 𝑢 ) = ( Λ ‘ 𝑑 ) )
92 fveq2 ( 𝑢 = 𝑑 → ( log ‘ 𝑢 ) = ( log ‘ 𝑑 ) )
93 91 92 oveq12d ( 𝑢 = 𝑑 → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) )
94 93 cbvsumv Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) )
95 94 a1i ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) )
96 90 95 oveq12d ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) )
97 84 96 eqtrd ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) )
98 38 81 97 3eqtrd ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) )
99 98 oveq1d ( 𝑁 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) )
100 85 sqcld ( 𝑁 ∈ ℕ → ( ( log ‘ 𝑁 ) ↑ 2 ) ∈ ℂ )
101 3 33 fsumcl ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℂ )
102 100 101 npcand ( 𝑁 ∈ ℕ → ( ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) )
103 34 99 102 3eqtrd ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) )