| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsfi |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∈ Fin ) |
| 2 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... 𝑑 ) ∈ Fin ) |
| 3 |
|
elrabi |
⊢ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → 𝑑 ∈ ℕ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑑 ∈ ℕ ) |
| 5 |
|
dvdsssfz1 |
⊢ ( 𝑑 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ⊆ ( 1 ... 𝑑 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ⊆ ( 1 ... 𝑑 ) ) |
| 7 |
2 6
|
ssfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ∈ Fin ) |
| 8 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } → 𝑢 ∈ ℕ ) |
| 9 |
8
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → 𝑢 ∈ ℕ ) |
| 10 |
|
vmacl |
⊢ ( 𝑢 ∈ ℕ → ( Λ ‘ 𝑢 ) ∈ ℝ ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( Λ ‘ 𝑢 ) ∈ ℝ ) |
| 12 |
|
breq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ∥ 𝑑 ↔ 𝑢 ∥ 𝑑 ) ) |
| 13 |
12
|
elrab |
⊢ ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ↔ ( 𝑢 ∈ ℕ ∧ 𝑢 ∥ 𝑑 ) ) |
| 14 |
13
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } → 𝑢 ∥ 𝑑 ) |
| 15 |
14
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → 𝑢 ∥ 𝑑 ) |
| 16 |
3
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → 𝑑 ∈ ℕ ) |
| 17 |
|
nndivdvds |
⊢ ( ( 𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ ) → ( 𝑢 ∥ 𝑑 ↔ ( 𝑑 / 𝑢 ) ∈ ℕ ) ) |
| 18 |
16 9 17
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( 𝑢 ∥ 𝑑 ↔ ( 𝑑 / 𝑢 ) ∈ ℕ ) ) |
| 19 |
15 18
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( 𝑑 / 𝑢 ) ∈ ℕ ) |
| 20 |
|
vmacl |
⊢ ( ( 𝑑 / 𝑢 ) ∈ ℕ → ( Λ ‘ ( 𝑑 / 𝑢 ) ) ∈ ℝ ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( Λ ‘ ( 𝑑 / 𝑢 ) ) ∈ ℝ ) |
| 22 |
11 21
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ ) |
| 24 |
23
|
anassrs |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ ) |
| 25 |
7 24
|
fsumcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) ∈ ℂ ) |
| 26 |
|
vmacl |
⊢ ( 𝑑 ∈ ℕ → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
| 27 |
4 26
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
| 28 |
4
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑑 ∈ ℝ+ ) |
| 29 |
28
|
relogcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ 𝑑 ) ∈ ℝ ) |
| 30 |
27 29
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℝ ) |
| 31 |
30
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℂ ) |
| 32 |
1 25 31
|
fsumadd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
| 33 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 34 |
|
fvoveq1 |
⊢ ( 𝑑 = ( 𝑢 · 𝑘 ) → ( Λ ‘ ( 𝑑 / 𝑢 ) ) = ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑑 = ( 𝑢 · 𝑘 ) → ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) ) |
| 36 |
33 35 23
|
fsumdvdscom |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) ) |
| 37 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ℕ |
| 38 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) |
| 39 |
37 38
|
sselid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ ℕ ) |
| 40 |
39
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑘 ∈ ℂ ) |
| 41 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ |
| 42 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 43 |
41 42
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℕ ) |
| 44 |
43
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℂ ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑢 ∈ ℂ ) |
| 46 |
43
|
nnne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ≠ 0 ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → 𝑢 ≠ 0 ) |
| 48 |
40 45 47
|
divcan3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( ( 𝑢 · 𝑘 ) / 𝑢 ) = 𝑘 ) |
| 49 |
48
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = ( Λ ‘ 𝑘 ) ) |
| 50 |
49
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) ) |
| 51 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑢 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 52 |
41 51
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑢 ) ∈ ℕ ) |
| 53 |
|
vmasum |
⊢ ( ( 𝑁 / 𝑢 ) ∈ ℕ → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) = ( log ‘ ( 𝑁 / 𝑢 ) ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ 𝑘 ) = ( log ‘ ( 𝑁 / 𝑢 ) ) ) |
| 55 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑁 ∈ ℝ+ ) |
| 57 |
43
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℝ+ ) |
| 58 |
56 57
|
relogdivd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ ( 𝑁 / 𝑢 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) |
| 59 |
50 54 58
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) |
| 60 |
59
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = ( ( Λ ‘ 𝑢 ) · ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) ) |
| 61 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... ( 𝑁 / 𝑢 ) ) ∈ Fin ) |
| 62 |
|
dvdsssfz1 |
⊢ ( ( 𝑁 / 𝑢 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ( 1 ... ( 𝑁 / 𝑢 ) ) ) |
| 63 |
52 62
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ⊆ ( 1 ... ( 𝑁 / 𝑢 ) ) ) |
| 64 |
61 63
|
ssfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ∈ Fin ) |
| 65 |
43 10
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( Λ ‘ 𝑢 ) ∈ ℝ ) |
| 66 |
65
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( Λ ‘ 𝑢 ) ∈ ℂ ) |
| 67 |
|
vmacl |
⊢ ( 𝑘 ∈ ℕ → ( Λ ‘ 𝑘 ) ∈ ℝ ) |
| 68 |
39 67
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ 𝑘 ) ∈ ℝ ) |
| 69 |
68
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ 𝑘 ) ∈ ℂ ) |
| 70 |
49 69
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ) → ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ∈ ℂ ) |
| 71 |
64 66 70
|
fsummulc2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) ) |
| 72 |
|
relogcl |
⊢ ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 73 |
72
|
recnd |
⊢ ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 74 |
56 73
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 75 |
57
|
relogcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ 𝑢 ) ∈ ℝ ) |
| 76 |
75
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( log ‘ 𝑢 ) ∈ ℂ ) |
| 77 |
66 74 76
|
subdid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( ( log ‘ 𝑁 ) − ( log ‘ 𝑢 ) ) ) = ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) ) |
| 78 |
60 71 77
|
3eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) ) |
| 79 |
78
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑢 ) } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( ( 𝑢 · 𝑘 ) / 𝑢 ) ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) ) |
| 80 |
66 74
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
| 81 |
66 76
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ∈ ℂ ) |
| 82 |
1 80 81
|
fsumsub |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) ) |
| 83 |
55 73
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 84 |
83
|
sqvald |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ 𝑁 ) ↑ 2 ) = ( ( log ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) |
| 85 |
|
vmasum |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Λ ‘ 𝑢 ) = ( log ‘ 𝑁 ) ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = ( ( log ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) |
| 87 |
1 83 66
|
fsummulc1 |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) ) |
| 88 |
84 86 87
|
3eqtr2rd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) ) |
| 89 |
|
fveq2 |
⊢ ( 𝑢 = 𝑑 → ( Λ ‘ 𝑢 ) = ( Λ ‘ 𝑑 ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑢 = 𝑑 → ( log ‘ 𝑢 ) = ( log ‘ 𝑑 ) ) |
| 91 |
89 90
|
oveq12d |
⊢ ( 𝑢 = 𝑑 → ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) |
| 92 |
91
|
cbvsumv |
⊢ Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) |
| 93 |
92
|
a1i |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) |
| 94 |
88 93
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
| 95 |
82 94
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑁 ) ) − ( ( Λ ‘ 𝑢 ) · ( log ‘ 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
| 96 |
36 79 95
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) = ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
| 97 |
96
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) ) |
| 98 |
83
|
sqcld |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ 𝑁 ) ↑ 2 ) ∈ ℂ ) |
| 99 |
1 31
|
fsumcl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ∈ ℂ ) |
| 100 |
98 99
|
npcand |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( log ‘ 𝑁 ) ↑ 2 ) − Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) + Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) ) |
| 101 |
32 97 100
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑 } ( ( Λ ‘ 𝑢 ) · ( Λ ‘ ( 𝑑 / 𝑢 ) ) ) + ( ( Λ ‘ 𝑑 ) · ( log ‘ 𝑑 ) ) ) = ( ( log ‘ 𝑁 ) ↑ 2 ) ) |