| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsfi | ⊢ ( 𝑘  ∈  ℕ  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 }  ∈  Fin ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 }  ⊆  ℕ | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ) | 
						
							| 4 | 2 3 | sselid | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  𝑑  ∈  ℕ ) | 
						
							| 5 |  | vmacl | ⊢ ( 𝑑  ∈  ℕ  →  ( Λ ‘ 𝑑 )  ∈  ℝ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  ( Λ ‘ 𝑑 )  ∈  ℝ ) | 
						
							| 7 |  | dvdsdivcl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  ( 𝑘  /  𝑑 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ) | 
						
							| 8 | 2 7 | sselid | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  ( 𝑘  /  𝑑 )  ∈  ℕ ) | 
						
							| 9 |  | vmacl | ⊢ ( ( 𝑘  /  𝑑 )  ∈  ℕ  →  ( Λ ‘ ( 𝑘  /  𝑑 ) )  ∈  ℝ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  ( Λ ‘ ( 𝑘  /  𝑑 ) )  ∈  ℝ ) | 
						
							| 11 | 6 10 | remulcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  ∈  ℝ ) | 
						
							| 12 | 1 11 | fsumrecl | ⊢ ( 𝑘  ∈  ℕ  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  ∈  ℝ ) | 
						
							| 13 |  | vmacl | ⊢ ( 𝑘  ∈  ℕ  →  ( Λ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 14 |  | nnrp | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ+ ) | 
						
							| 15 | 14 | relogcld | ⊢ ( 𝑘  ∈  ℕ  →  ( log ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 16 | 13 15 | remulcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 17 | 12 16 | readdcld | ⊢ ( 𝑘  ∈  ℕ  →  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 18 | 17 | recnd | ⊢ ( 𝑘  ∈  ℕ  →  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 20 | 19 | fmpttd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) : ℕ ⟶ ℂ ) | 
						
							| 21 |  | ssrab2 | ⊢ { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 }  ⊆  ℕ | 
						
							| 22 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } )  →  𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } ) | 
						
							| 23 | 21 22 | sselid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } )  →  𝑚  ∈  ℕ ) | 
						
							| 24 |  | breq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑥  ∥  𝑘  ↔  𝑥  ∥  𝑚 ) ) | 
						
							| 25 | 24 | rabbidv | ⊢ ( 𝑘  =  𝑚  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 }  =  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑚 } ) | 
						
							| 26 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑚  →  ( Λ ‘ ( 𝑘  /  𝑑 ) )  =  ( Λ ‘ ( 𝑚  /  𝑑 ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑘  =  𝑚  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  =  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  =  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) ) ) | 
						
							| 29 | 25 28 | sumeq12dv | ⊢ ( 𝑘  =  𝑚  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  =  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑚 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( Λ ‘ 𝑘 )  =  ( Λ ‘ 𝑚 ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( log ‘ 𝑘 )  =  ( log ‘ 𝑚 ) ) | 
						
							| 32 | 30 31 | oveq12d | ⊢ ( 𝑘  =  𝑚  →  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) | 
						
							| 33 | 29 32 | oveq12d | ⊢ ( 𝑘  =  𝑚  →  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) )  =  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑚 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 35 |  | ovex | ⊢ ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) )  ∈  V | 
						
							| 36 | 33 34 35 | fvmpt3i | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 )  =  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑚 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) ) | 
						
							| 37 | 23 36 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } )  →  ( ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 )  =  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑚 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) ) | 
						
							| 38 | 37 | sumeq2dv | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  Σ 𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } ( ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 )  =  Σ 𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑚 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) ) | 
						
							| 39 |  | logsqvma | ⊢ ( 𝑛  ∈  ℕ  →  Σ 𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑚 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) )  =  ( ( log ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  Σ 𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑚 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑚  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) )  =  ( ( log ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 41 | 38 40 | eqtr2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  ( ( log ‘ 𝑛 ) ↑ 2 )  =  Σ 𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } ( ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) ) | 
						
							| 42 | 41 | mpteq2dva | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) )  =  ( 𝑛  ∈  ℕ  ↦  Σ 𝑚  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑛 } ( ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) ) ) | 
						
							| 43 | 20 42 | muinv | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) )  =  ( 𝑖  ∈  ℕ  ↦  Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖  /  𝑗 ) ) ) ) ) | 
						
							| 44 | 43 | fveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) ‘ 𝑁 )  =  ( ( 𝑖  ∈  ℕ  ↦  Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖  /  𝑗 ) ) ) ) ‘ 𝑁 ) ) | 
						
							| 45 |  | breq2 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑥  ∥  𝑘  ↔  𝑥  ∥  𝑁 ) ) | 
						
							| 46 | 45 | rabbidv | ⊢ ( 𝑘  =  𝑁  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 }  =  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 47 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑁  →  ( Λ ‘ ( 𝑘  /  𝑑 ) )  =  ( Λ ‘ ( 𝑁  /  𝑑 ) ) ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( 𝑘  =  𝑁  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  =  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑁  /  𝑑 ) ) ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝑘  =  𝑁  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } )  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  =  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑁  /  𝑑 ) ) ) ) | 
						
							| 50 | 46 49 | sumeq12dv | ⊢ ( 𝑘  =  𝑁  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  =  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑁  /  𝑑 ) ) ) ) | 
						
							| 51 |  | fveq2 | ⊢ ( 𝑘  =  𝑁  →  ( Λ ‘ 𝑘 )  =  ( Λ ‘ 𝑁 ) ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑘  =  𝑁  →  ( log ‘ 𝑘 )  =  ( log ‘ 𝑁 ) ) | 
						
							| 53 | 51 52 | oveq12d | ⊢ ( 𝑘  =  𝑁  →  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) )  =  ( ( Λ ‘ 𝑁 )  ·  ( log ‘ 𝑁 ) ) ) | 
						
							| 54 | 50 53 | oveq12d | ⊢ ( 𝑘  =  𝑁  →  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) )  =  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑁  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑁 )  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 55 | 54 34 35 | fvmpt3i | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑘 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑘  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑘 )  ·  ( log ‘ 𝑘 ) ) ) ) ‘ 𝑁 )  =  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑁  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑁 )  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑗  =  𝑑  →  ( μ ‘ 𝑗 )  =  ( μ ‘ 𝑑 ) ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑗  =  𝑑  →  ( 𝑖  /  𝑗 )  =  ( 𝑖  /  𝑑 ) ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( 𝑗  =  𝑑  →  ( log ‘ ( 𝑖  /  𝑗 ) )  =  ( log ‘ ( 𝑖  /  𝑑 ) ) ) | 
						
							| 59 | 58 | oveq1d | ⊢ ( 𝑗  =  𝑑  →  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 )  =  ( ( log ‘ ( 𝑖  /  𝑑 ) ) ↑ 2 ) ) | 
						
							| 60 | 56 59 | oveq12d | ⊢ ( 𝑗  =  𝑑  →  ( ( μ ‘ 𝑗 )  ·  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) )  =  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑖  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 61 | 60 | cbvsumv | ⊢ Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) )  =  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑖  /  𝑑 ) ) ↑ 2 ) ) | 
						
							| 62 |  | breq2 | ⊢ ( 𝑖  =  𝑁  →  ( 𝑥  ∥  𝑖  ↔  𝑥  ∥  𝑁 ) ) | 
						
							| 63 | 62 | rabbidv | ⊢ ( 𝑖  =  𝑁  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 }  =  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 64 |  | fvoveq1 | ⊢ ( 𝑖  =  𝑁  →  ( log ‘ ( 𝑖  /  𝑑 ) )  =  ( log ‘ ( 𝑁  /  𝑑 ) ) ) | 
						
							| 65 | 64 | oveq1d | ⊢ ( 𝑖  =  𝑁  →  ( ( log ‘ ( 𝑖  /  𝑑 ) ) ↑ 2 )  =  ( ( log ‘ ( 𝑁  /  𝑑 ) ) ↑ 2 ) ) | 
						
							| 66 | 65 | oveq2d | ⊢ ( 𝑖  =  𝑁  →  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑖  /  𝑑 ) ) ↑ 2 ) )  =  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑁  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝑖  =  𝑁  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } )  →  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑖  /  𝑑 ) ) ↑ 2 ) )  =  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑁  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 68 | 63 67 | sumeq12dv | ⊢ ( 𝑖  =  𝑁  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑖  /  𝑑 ) ) ↑ 2 ) )  =  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑁  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 69 | 61 68 | eqtrid | ⊢ ( 𝑖  =  𝑁  →  Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) )  =  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑁  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 70 |  | ssrab2 | ⊢ { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 }  ⊆  ℕ | 
						
							| 71 |  | dvdsdivcl | ⊢ ( ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } )  →  ( 𝑖  /  𝑗 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ) | 
						
							| 72 | 70 71 | sselid | ⊢ ( ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } )  →  ( 𝑖  /  𝑗 )  ∈  ℕ ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑖  /  𝑗 )  →  ( log ‘ 𝑛 )  =  ( log ‘ ( 𝑖  /  𝑗 ) ) ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( 𝑛  =  ( 𝑖  /  𝑗 )  →  ( ( log ‘ 𝑛 ) ↑ 2 )  =  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) ) | 
						
							| 75 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 76 |  | ovex | ⊢ ( ( log ‘ 𝑛 ) ↑ 2 )  ∈  V | 
						
							| 77 | 74 75 76 | fvmpt3i | ⊢ ( ( 𝑖  /  𝑗 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖  /  𝑗 ) )  =  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) ) | 
						
							| 78 | 72 77 | syl | ⊢ ( ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖  /  𝑗 ) )  =  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } )  →  ( ( μ ‘ 𝑗 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖  /  𝑗 ) ) )  =  ( ( μ ‘ 𝑗 )  ·  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 80 | 79 | sumeq2dv | ⊢ ( 𝑖  ∈  ℕ  →  Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖  /  𝑗 ) ) )  =  Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 81 | 80 | mpteq2ia | ⊢ ( 𝑖  ∈  ℕ  ↦  Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖  /  𝑗 ) ) ) )  =  ( 𝑖  ∈  ℕ  ↦  Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 82 |  | sumex | ⊢ Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( log ‘ ( 𝑖  /  𝑗 ) ) ↑ 2 ) )  ∈  V | 
						
							| 83 | 69 81 82 | fvmpt3i | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑖  ∈  ℕ  ↦  Σ 𝑗  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑖 } ( ( μ ‘ 𝑗 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖  /  𝑗 ) ) ) ) ‘ 𝑁 )  =  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑁  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 84 | 44 55 83 | 3eqtr3rd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑁  /  𝑑 ) ) ↑ 2 ) )  =  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑁  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑁 )  ·  ( log ‘ 𝑁 ) ) ) ) |