Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( 𝑘 ∈ ℕ → ( 1 ... 𝑘 ) ∈ Fin ) |
2 |
|
dvdsssfz1 |
⊢ ( 𝑘 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ⊆ ( 1 ... 𝑘 ) ) |
3 |
1 2
|
ssfid |
⊢ ( 𝑘 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ∈ Fin ) |
4 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ⊆ ℕ |
5 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) |
6 |
4 5
|
sselid |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → 𝑑 ∈ ℕ ) |
7 |
|
vmacl |
⊢ ( 𝑑 ∈ ℕ → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
9 |
|
dvdsdivcl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( 𝑘 / 𝑑 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) |
10 |
4 9
|
sselid |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( 𝑘 / 𝑑 ) ∈ ℕ ) |
11 |
|
vmacl |
⊢ ( ( 𝑘 / 𝑑 ) ∈ ℕ → ( Λ ‘ ( 𝑘 / 𝑑 ) ) ∈ ℝ ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( Λ ‘ ( 𝑘 / 𝑑 ) ) ∈ ℝ ) |
13 |
8 12
|
remulcld |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) ∈ ℝ ) |
14 |
3 13
|
fsumrecl |
⊢ ( 𝑘 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) ∈ ℝ ) |
15 |
|
vmacl |
⊢ ( 𝑘 ∈ ℕ → ( Λ ‘ 𝑘 ) ∈ ℝ ) |
16 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
17 |
16
|
relogcld |
⊢ ( 𝑘 ∈ ℕ → ( log ‘ 𝑘 ) ∈ ℝ ) |
18 |
15 17
|
remulcld |
⊢ ( 𝑘 ∈ ℕ → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ∈ ℝ ) |
19 |
14 18
|
readdcld |
⊢ ( 𝑘 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℝ ) |
20 |
19
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℂ ) |
21 |
20
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℂ ) |
22 |
21
|
fmpttd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) : ℕ ⟶ ℂ ) |
23 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ⊆ ℕ |
24 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) |
25 |
23 24
|
sselid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → 𝑚 ∈ ℕ ) |
26 |
|
breq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑥 ∥ 𝑘 ↔ 𝑥 ∥ 𝑚 ) ) |
27 |
26
|
rabbidv |
⊢ ( 𝑘 = 𝑚 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
28 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑚 → ( Λ ‘ ( 𝑘 / 𝑑 ) ) = ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑘 = 𝑚 → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) ) |
31 |
27 30
|
sumeq12dv |
⊢ ( 𝑘 = 𝑚 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( Λ ‘ 𝑘 ) = ( Λ ‘ 𝑚 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( log ‘ 𝑘 ) = ( log ‘ 𝑚 ) ) |
34 |
32 33
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) |
35 |
31 34
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
36 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) |
37 |
|
ovex |
⊢ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ V |
38 |
35 36 37
|
fvmpt3i |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
39 |
25 38
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
40 |
39
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
41 |
|
logsqvma |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
43 |
40 42
|
eqtr2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ 𝑛 ) ↑ 2 ) = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) ) |
44 |
43
|
mpteq2dva |
⊢ ( 𝑁 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) ) ) |
45 |
22 44
|
muinv |
⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) ) |
46 |
45
|
fveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑁 ) = ( ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) ‘ 𝑁 ) ) |
47 |
|
breq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝑥 ∥ 𝑘 ↔ 𝑥 ∥ 𝑁 ) ) |
48 |
47
|
rabbidv |
⊢ ( 𝑘 = 𝑁 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
49 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑁 → ( Λ ‘ ( 𝑘 / 𝑑 ) ) = ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) |
50 |
49
|
oveq2d |
⊢ ( 𝑘 = 𝑁 → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝑘 = 𝑁 ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) ) |
52 |
48 51
|
sumeq12dv |
⊢ ( 𝑘 = 𝑁 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( Λ ‘ 𝑘 ) = ( Λ ‘ 𝑁 ) ) |
54 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( log ‘ 𝑘 ) = ( log ‘ 𝑁 ) ) |
55 |
53 54
|
oveq12d |
⊢ ( 𝑘 = 𝑁 → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) |
56 |
52 55
|
oveq12d |
⊢ ( 𝑘 = 𝑁 → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) ) |
57 |
56 36 37
|
fvmpt3i |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑁 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑗 = 𝑑 → ( μ ‘ 𝑗 ) = ( μ ‘ 𝑑 ) ) |
59 |
|
oveq2 |
⊢ ( 𝑗 = 𝑑 → ( 𝑖 / 𝑗 ) = ( 𝑖 / 𝑑 ) ) |
60 |
59
|
fveq2d |
⊢ ( 𝑗 = 𝑑 → ( log ‘ ( 𝑖 / 𝑗 ) ) = ( log ‘ ( 𝑖 / 𝑑 ) ) ) |
61 |
60
|
oveq1d |
⊢ ( 𝑗 = 𝑑 → ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) = ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) |
62 |
58 61
|
oveq12d |
⊢ ( 𝑗 = 𝑑 → ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) ) |
63 |
62
|
cbvsumv |
⊢ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) |
64 |
|
breq2 |
⊢ ( 𝑖 = 𝑁 → ( 𝑥 ∥ 𝑖 ↔ 𝑥 ∥ 𝑁 ) ) |
65 |
64
|
rabbidv |
⊢ ( 𝑖 = 𝑁 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
66 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑁 → ( log ‘ ( 𝑖 / 𝑑 ) ) = ( log ‘ ( 𝑁 / 𝑑 ) ) ) |
67 |
66
|
oveq1d |
⊢ ( 𝑖 = 𝑁 → ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) |
68 |
67
|
oveq2d |
⊢ ( 𝑖 = 𝑁 → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝑖 = 𝑁 ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
70 |
65 69
|
sumeq12dv |
⊢ ( 𝑖 = 𝑁 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
71 |
63 70
|
syl5eq |
⊢ ( 𝑖 = 𝑁 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
72 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ⊆ ℕ |
73 |
|
dvdsdivcl |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( 𝑖 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) |
74 |
72 73
|
sselid |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( 𝑖 / 𝑗 ) ∈ ℕ ) |
75 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑖 / 𝑗 ) → ( log ‘ 𝑛 ) = ( log ‘ ( 𝑖 / 𝑗 ) ) ) |
76 |
75
|
oveq1d |
⊢ ( 𝑛 = ( 𝑖 / 𝑗 ) → ( ( log ‘ 𝑛 ) ↑ 2 ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) |
77 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
78 |
|
ovex |
⊢ ( ( log ‘ 𝑛 ) ↑ 2 ) ∈ V |
79 |
76 77 78
|
fvmpt3i |
⊢ ( ( 𝑖 / 𝑗 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) |
80 |
74 79
|
syl |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) |
81 |
80
|
oveq2d |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) = ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ) |
82 |
81
|
sumeq2dv |
⊢ ( 𝑖 ∈ ℕ → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ) |
83 |
82
|
mpteq2ia |
⊢ ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ) |
84 |
|
sumex |
⊢ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ∈ V |
85 |
71 83 84
|
fvmpt3i |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) ‘ 𝑁 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
86 |
46 57 85
|
3eqtr3rd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) ) |