Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
2 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℤ ) |
3 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) |
4 |
|
id |
⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) |
5 |
3 4
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) = ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
7 |
|
ovex |
⊢ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ∈ V |
8 |
5 6 7
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) |
10 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) |
11 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
12 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
13 |
10 11 12
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
14 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
16 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
18 |
13 15 17
|
divcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ∈ ℂ ) |
19 |
|
logtayl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) |
20 |
1 2 9 18 19
|
isumclim |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |