| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpfval.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
islp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
| 3 |
|
ssdifss |
⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∖ { 𝑃 } ) ⊆ 𝑋 ) |
| 4 |
1
|
islp |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑃 } ) ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) ) ) ) |
| 5 |
3 4
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) ) ) ) |
| 6 |
|
difabs |
⊢ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) = ( 𝑆 ∖ { 𝑃 } ) |
| 7 |
6
|
fveq2i |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) |
| 8 |
7
|
eleq2i |
⊢ ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑆 ∖ { 𝑃 } ) ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) |
| 9 |
5 8
|
bitrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
| 10 |
2 9
|
bitr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |