| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p | ⊢ 𝑃  =  ( LPIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lpi0.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 4 | 3 2 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 5 |  | eqid | ⊢ ( RSpan ‘ 𝑅 )  =  ( RSpan ‘ 𝑅 ) | 
						
							| 6 | 5 2 | rsp0 | ⊢ ( 𝑅  ∈  Ring  →  ( ( RSpan ‘ 𝑅 ) ‘ {  0  } )  =  {  0  } ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  {  0  }  =  ( ( RSpan ‘ 𝑅 ) ‘ {  0  } ) ) | 
						
							| 8 |  | sneq | ⊢ ( 𝑔  =   0   →  { 𝑔 }  =  {  0  } ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑔  =   0   →  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  =  ( ( RSpan ‘ 𝑅 ) ‘ {  0  } ) ) | 
						
							| 10 | 9 | rspceeqv | ⊢ ( (  0   ∈  ( Base ‘ 𝑅 )  ∧  {  0  }  =  ( ( RSpan ‘ 𝑅 ) ‘ {  0  } ) )  →  ∃ 𝑔  ∈  ( Base ‘ 𝑅 ) {  0  }  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) | 
						
							| 11 | 4 7 10 | syl2anc | ⊢ ( 𝑅  ∈  Ring  →  ∃ 𝑔  ∈  ( Base ‘ 𝑅 ) {  0  }  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) | 
						
							| 12 | 1 5 3 | islpidl | ⊢ ( 𝑅  ∈  Ring  →  ( {  0  }  ∈  𝑃  ↔  ∃ 𝑔  ∈  ( Base ‘ 𝑅 ) {  0  }  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) ) | 
						
							| 13 | 11 12 | mpbird | ⊢ ( 𝑅  ∈  Ring  →  {  0  }  ∈  𝑃 ) |