| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpival.p |
⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) |
| 2 |
|
lpi1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 4 |
2 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 5 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
| 6 |
5 2 3
|
rsp1 |
⊢ ( 𝑅 ∈ Ring → ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) = 𝐵 ) |
| 7 |
6
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) ) |
| 8 |
|
sneq |
⊢ ( 𝑔 = ( 1r ‘ 𝑅 ) → { 𝑔 } = { ( 1r ‘ 𝑅 ) } ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑔 = ( 1r ‘ 𝑅 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) ) |
| 10 |
9
|
rspceeqv |
⊢ ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) ) → ∃ 𝑔 ∈ 𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) |
| 11 |
4 7 10
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ∃ 𝑔 ∈ 𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) |
| 12 |
1 5 2
|
islpidl |
⊢ ( 𝑅 ∈ Ring → ( 𝐵 ∈ 𝑃 ↔ ∃ 𝑔 ∈ 𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) ) |
| 13 |
11 12
|
mpbird |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑃 ) |