| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p | ⊢ 𝑃  =  ( LPIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lpi1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 4 | 2 3 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 5 |  | eqid | ⊢ ( RSpan ‘ 𝑅 )  =  ( RSpan ‘ 𝑅 ) | 
						
							| 6 | 5 2 3 | rsp1 | ⊢ ( 𝑅  ∈  Ring  →  ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } )  =  𝐵 ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  𝐵  =  ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) ) | 
						
							| 8 |  | sneq | ⊢ ( 𝑔  =  ( 1r ‘ 𝑅 )  →  { 𝑔 }  =  { ( 1r ‘ 𝑅 ) } ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑔  =  ( 1r ‘ 𝑅 )  →  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  =  ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) ) | 
						
							| 10 | 9 | rspceeqv | ⊢ ( ( ( 1r ‘ 𝑅 )  ∈  𝐵  ∧  𝐵  =  ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) )  →  ∃ 𝑔  ∈  𝐵 𝐵  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) | 
						
							| 11 | 4 7 10 | syl2anc | ⊢ ( 𝑅  ∈  Ring  →  ∃ 𝑔  ∈  𝐵 𝐵  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) | 
						
							| 12 | 1 5 2 | islpidl | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐵  ∈  𝑃  ↔  ∃ 𝑔  ∈  𝐵 𝐵  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) ) | 
						
							| 13 | 11 12 | mpbird | ⊢ ( 𝑅  ∈  Ring  →  𝐵  ∈  𝑃 ) |