Step |
Hyp |
Ref |
Expression |
1 |
|
lpigen.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lpigen.p |
⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) |
3 |
|
lpigen.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
2 4 5
|
islpidl |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ) |
8 |
5 1 4 3
|
lidldvgen |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) |
9 |
8
|
3expa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) |
10 |
9
|
rexbidva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) → ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) |
12 |
5 1
|
lidlss |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
14 |
13
|
sseld |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝑥 ∈ 𝐼 → 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
15 |
14
|
adantrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
16 |
15
|
ancrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) ) |
17 |
11 16
|
impbid2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) |
18 |
17
|
rexbidv2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) |
19 |
7 10 18
|
3bitrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) |