Step |
Hyp |
Ref |
Expression |
1 |
|
lpirring |
⊢ ( 𝑅 ∈ LPIR → 𝑅 ∈ Ring ) |
2 |
|
eqid |
⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
2 3 4
|
islpidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) ) ) |
6 |
1 5
|
syl |
⊢ ( 𝑅 ∈ LPIR → ( 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) ) ) |
7 |
6
|
biimpa |
⊢ ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) ) |
8 |
|
snelpwi |
⊢ ( 𝑐 ∈ ( Base ‘ 𝑅 ) → { 𝑐 } ∈ 𝒫 ( Base ‘ 𝑅 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → { 𝑐 } ∈ 𝒫 ( Base ‘ 𝑅 ) ) |
10 |
|
snfi |
⊢ { 𝑐 } ∈ Fin |
11 |
10
|
a1i |
⊢ ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → { 𝑐 } ∈ Fin ) |
12 |
9 11
|
elind |
⊢ ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → { 𝑐 } ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ) |
13 |
|
eqid |
⊢ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) |
14 |
|
fveq2 |
⊢ ( 𝑏 = { 𝑐 } → ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) ) |
15 |
14
|
rspceeqv |
⊢ ( ( { 𝑐 } ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) |
16 |
12 13 15
|
sylancl |
⊢ ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) |
17 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) → ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) → ( ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) ) |
19 |
16 18
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) ) |
20 |
19
|
rexlimdva |
⊢ ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) → ( ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) ) |
21 |
7 20
|
mpd |
⊢ ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) |
22 |
21
|
ralrimiva |
⊢ ( 𝑅 ∈ LPIR → ∀ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) |
23 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
24 |
2 23
|
islpir |
⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) ) |
25 |
24
|
simprbi |
⊢ ( 𝑅 ∈ LPIR → ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
26 |
25
|
raleqdv |
⊢ ( 𝑅 ∈ LPIR → ( ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ↔ ∀ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) ) |
27 |
22 26
|
mpbird |
⊢ ( 𝑅 ∈ LPIR → ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) |
28 |
4 23 3
|
islnr2 |
⊢ ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) ) |
29 |
1 27 28
|
sylanbrc |
⊢ ( 𝑅 ∈ LPIR → 𝑅 ∈ LNoeR ) |