Metamath Proof Explorer


Theorem lpirlnr

Description: Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion lpirlnr ( 𝑅 ∈ LPIR → 𝑅 ∈ LNoeR )

Proof

Step Hyp Ref Expression
1 lpirring ( 𝑅 ∈ LPIR → 𝑅 ∈ Ring )
2 eqid ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 )
3 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 2 3 4 islpidl ( 𝑅 ∈ Ring → ( 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) ) )
6 1 5 syl ( 𝑅 ∈ LPIR → ( 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) ) )
7 6 biimpa ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) )
8 snelpwi ( 𝑐 ∈ ( Base ‘ 𝑅 ) → { 𝑐 } ∈ 𝒫 ( Base ‘ 𝑅 ) )
9 8 adantl ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → { 𝑐 } ∈ 𝒫 ( Base ‘ 𝑅 ) )
10 snfi { 𝑐 } ∈ Fin
11 10 a1i ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → { 𝑐 } ∈ Fin )
12 9 11 elind ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → { 𝑐 } ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) )
13 eqid ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } )
14 fveq2 ( 𝑏 = { 𝑐 } → ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) )
15 14 rspceeqv ( ( { 𝑐 } ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) )
16 12 13 15 sylancl ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) )
17 eqeq1 ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) → ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) )
18 17 rexbidv ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) → ( ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) )
19 16 18 syl5ibrcom ( ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) )
20 19 rexlimdva ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) → ( ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑐 } ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) )
21 7 20 mpd ( ( 𝑅 ∈ LPIR ∧ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) )
22 21 ralrimiva ( 𝑅 ∈ LPIR → ∀ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) )
23 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
24 2 23 islpir ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) )
25 24 simprbi ( 𝑅 ∈ LPIR → ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) )
26 25 raleqdv ( 𝑅 ∈ LPIR → ( ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ↔ ∀ 𝑎 ∈ ( LPIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) )
27 22 26 mpbird ( 𝑅 ∈ LPIR → ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) )
28 4 23 3 islnr2 ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑎 = ( ( RSpan ‘ 𝑅 ) ‘ 𝑏 ) ) )
29 1 27 28 sylanbrc ( 𝑅 ∈ LPIR → 𝑅 ∈ LNoeR )