Description: Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lpirring | ⊢ ( 𝑅 ∈ LPIR → 𝑅 ∈ Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) | |
2 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
3 | 1 2 | islpir | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝑅 ∈ LPIR → 𝑅 ∈ Ring ) |