Metamath Proof Explorer


Theorem lpirring

Description: Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion lpirring ( 𝑅 ∈ LPIR → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 eqid ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 )
2 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
3 1 2 islpir ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) )
4 3 simplbi ( 𝑅 ∈ LPIR → 𝑅 ∈ Ring )