Description: Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lpirring | ⊢ ( 𝑅 ∈ LPIR → 𝑅 ∈ Ring ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 3 | 1 2 | islpir | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) ) | 
| 4 | 3 | simplbi | ⊢ ( 𝑅 ∈ LPIR → 𝑅 ∈ Ring ) |