| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p | ⊢ 𝑃  =  ( LPIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lpiss.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( RSpan ‘ 𝑅 )  =  ( RSpan ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 | 1 3 4 | islpidl | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑎  ∈  𝑃  ↔  ∃ 𝑔  ∈  ( Base ‘ 𝑅 ) 𝑎  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) ) | 
						
							| 6 |  | snssi | ⊢ ( 𝑔  ∈  ( Base ‘ 𝑅 )  →  { 𝑔 }  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 7 | 3 4 2 | rspcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  { 𝑔 }  ⊆  ( Base ‘ 𝑅 ) )  →  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  ∈  𝑈 ) | 
						
							| 8 | 6 7 | sylan2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑔  ∈  ( Base ‘ 𝑅 ) )  →  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  ∈  𝑈 ) | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑎  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  →  ( 𝑎  ∈  𝑈  ↔  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  ∈  𝑈 ) ) | 
						
							| 10 | 8 9 | syl5ibrcom | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑔  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑎  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  →  𝑎  ∈  𝑈 ) ) | 
						
							| 11 | 10 | rexlimdva | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑔  ∈  ( Base ‘ 𝑅 ) 𝑎  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  →  𝑎  ∈  𝑈 ) ) | 
						
							| 12 | 5 11 | sylbid | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑎  ∈  𝑃  →  𝑎  ∈  𝑈 ) ) | 
						
							| 13 | 12 | ssrdv | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ⊆  𝑈 ) |