| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p | ⊢ 𝑃  =  ( LPIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lpival.k | ⊢ 𝐾  =  ( RSpan ‘ 𝑅 ) | 
						
							| 3 |  | lpival.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( RSpan ‘ 𝑟 )  =  ( RSpan ‘ 𝑅 ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑟  =  𝑅  →  ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } )  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) | 
						
							| 7 | 6 | sneqd | ⊢ ( 𝑟  =  𝑅  →  { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) }  =  { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) | 
						
							| 8 | 4 7 | iuneq12d | ⊢ ( 𝑟  =  𝑅  →  ∪  𝑔  ∈  ( Base ‘ 𝑟 ) { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) }  =  ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) | 
						
							| 9 |  | df-lpidl | ⊢ LPIdeal  =  ( 𝑟  ∈  Ring  ↦  ∪  𝑔  ∈  ( Base ‘ 𝑟 ) { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } ) | 
						
							| 10 |  | fvex | ⊢ ( RSpan ‘ 𝑅 )  ∈  V | 
						
							| 11 | 10 | rnex | ⊢ ran  ( RSpan ‘ 𝑅 )  ∈  V | 
						
							| 12 |  | p0ex | ⊢ { ∅ }  ∈  V | 
						
							| 13 | 11 12 | unex | ⊢ ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } )  ∈  V | 
						
							| 14 |  | iunss | ⊢ ( ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }  ⊆  ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } )  ↔  ∀ 𝑔  ∈  ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }  ⊆  ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } ) ) | 
						
							| 15 |  | fvrn0 | ⊢ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  ∈  ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } ) | 
						
							| 16 |  | snssi | ⊢ ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } )  ∈  ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } )  →  { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }  ⊆  ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }  ⊆  ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } ) | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑔  ∈  ( Base ‘ 𝑅 )  →  { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }  ⊆  ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } ) ) | 
						
							| 19 | 14 18 | mprgbir | ⊢ ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }  ⊆  ( ran  ( RSpan ‘ 𝑅 )  ∪  { ∅ } ) | 
						
							| 20 | 13 19 | ssexi | ⊢ ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) }  ∈  V | 
						
							| 21 | 8 9 20 | fvmpt | ⊢ ( 𝑅  ∈  Ring  →  ( LPIdeal ‘ 𝑅 )  =  ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) | 
						
							| 22 |  | iuneq1 | ⊢ ( 𝐵  =  ( Base ‘ 𝑅 )  →  ∪  𝑔  ∈  𝐵 { ( 𝐾 ‘ { 𝑔 } ) }  =  ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } ) | 
						
							| 23 | 3 22 | ax-mp | ⊢ ∪  𝑔  ∈  𝐵 { ( 𝐾 ‘ { 𝑔 } ) }  =  ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } | 
						
							| 24 | 2 | fveq1i | ⊢ ( 𝐾 ‘ { 𝑔 } )  =  ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) | 
						
							| 25 | 24 | sneqi | ⊢ { ( 𝐾 ‘ { 𝑔 } ) }  =  { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } | 
						
							| 26 | 25 | a1i | ⊢ ( 𝑔  ∈  ( Base ‘ 𝑅 )  →  { ( 𝐾 ‘ { 𝑔 } ) }  =  { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) | 
						
							| 27 | 26 | iuneq2i | ⊢ ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) }  =  ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } | 
						
							| 28 | 23 27 | eqtri | ⊢ ∪  𝑔  ∈  𝐵 { ( 𝐾 ‘ { 𝑔 } ) }  =  ∪  𝑔  ∈  ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } | 
						
							| 29 | 21 1 28 | 3eqtr4g | ⊢ ( 𝑅  ∈  Ring  →  𝑃  =  ∪  𝑔  ∈  𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) |