Step |
Hyp |
Ref |
Expression |
1 |
|
lpival.p |
⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) |
2 |
|
lpival.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
3 |
|
lpival.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( RSpan ‘ 𝑟 ) = ( RSpan ‘ 𝑅 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) |
7 |
6
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) |
8 |
4 7
|
iuneq12d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑔 ∈ ( Base ‘ 𝑟 ) { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) |
9 |
|
df-lpidl |
⊢ LPIdeal = ( 𝑟 ∈ Ring ↦ ∪ 𝑔 ∈ ( Base ‘ 𝑟 ) { ( ( RSpan ‘ 𝑟 ) ‘ { 𝑔 } ) } ) |
10 |
|
fvex |
⊢ ( RSpan ‘ 𝑅 ) ∈ V |
11 |
10
|
rnex |
⊢ ran ( RSpan ‘ 𝑅 ) ∈ V |
12 |
|
p0ex |
⊢ { ∅ } ∈ V |
13 |
11 12
|
unex |
⊢ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ∈ V |
14 |
|
iunss |
⊢ ( ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ↔ ∀ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ) |
15 |
|
fvrn0 |
⊢ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) |
16 |
|
snssi |
⊢ ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ∈ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) → { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ) |
17 |
15 16
|
ax-mp |
⊢ { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) |
18 |
17
|
a1i |
⊢ ( 𝑔 ∈ ( Base ‘ 𝑅 ) → { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) ) |
19 |
14 18
|
mprgbir |
⊢ ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ⊆ ( ran ( RSpan ‘ 𝑅 ) ∪ { ∅ } ) |
20 |
13 19
|
ssexi |
⊢ ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ∈ V |
21 |
8 9 20
|
fvmpt |
⊢ ( 𝑅 ∈ Ring → ( LPIdeal ‘ 𝑅 ) = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) |
22 |
|
iuneq1 |
⊢ ( 𝐵 = ( Base ‘ 𝑅 ) → ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } ) |
23 |
3 22
|
ax-mp |
⊢ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } |
24 |
2
|
fveq1i |
⊢ ( 𝐾 ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) |
25 |
24
|
sneqi |
⊢ { ( 𝐾 ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } |
26 |
25
|
a1i |
⊢ ( 𝑔 ∈ ( Base ‘ 𝑅 ) → { ( 𝐾 ‘ { 𝑔 } ) } = { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } ) |
27 |
26
|
iuneq2i |
⊢ ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( 𝐾 ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } |
28 |
23 27
|
eqtri |
⊢ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } = ∪ 𝑔 ∈ ( Base ‘ 𝑅 ) { ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) } |
29 |
21 1 28
|
3eqtr4g |
⊢ ( 𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) |