Metamath Proof Explorer


Theorem lplnbase

Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses lplnbase.b 𝐵 = ( Base ‘ 𝐾 )
lplnbase.p 𝑃 = ( LPlanes ‘ 𝐾 )
Assertion lplnbase ( 𝑋𝑃𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 lplnbase.b 𝐵 = ( Base ‘ 𝐾 )
2 lplnbase.p 𝑃 = ( LPlanes ‘ 𝐾 )
3 n0i ( 𝑋𝑃 → ¬ 𝑃 = ∅ )
4 2 eqeq1i ( 𝑃 = ∅ ↔ ( LPlanes ‘ 𝐾 ) = ∅ )
5 3 4 sylnib ( 𝑋𝑃 → ¬ ( LPlanes ‘ 𝐾 ) = ∅ )
6 fvprc ( ¬ 𝐾 ∈ V → ( LPlanes ‘ 𝐾 ) = ∅ )
7 5 6 nsyl2 ( 𝑋𝑃𝐾 ∈ V )
8 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
9 eqid ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 )
10 1 8 9 2 islpln ( 𝐾 ∈ V → ( 𝑋𝑃 ↔ ( 𝑋𝐵 ∧ ∃ 𝑥 ∈ ( LLines ‘ 𝐾 ) 𝑥 ( ⋖ ‘ 𝐾 ) 𝑋 ) ) )
11 10 simprbda ( ( 𝐾 ∈ V ∧ 𝑋𝑃 ) → 𝑋𝐵 )
12 7 11 mpancom ( 𝑋𝑃𝑋𝐵 )