Step |
Hyp |
Ref |
Expression |
1 |
|
lplnexat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lplnexat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
lplnexat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
lplnexat.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
5 |
|
lplnexat.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) → 𝐾 ∈ HL ) |
7 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) → 𝑌 ∈ 𝑁 ) |
8 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) → 𝑋 ∈ 𝑃 ) |
9 |
6 7 8
|
3jca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) → ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃 ) ) |
10 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
11 |
1 10 4 5
|
llncvrlpln2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ) |
12 |
9 11
|
sylan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ) |
13 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝐾 ∈ HL ) |
14 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ∈ 𝑁 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
16 |
15 4
|
llnbase |
⊢ ( 𝑌 ∈ 𝑁 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
17 |
14 16
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑋 ∈ 𝑃 ) |
19 |
15 5
|
lplnbase |
⊢ ( 𝑋 ∈ 𝑃 → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
21 |
15 1 2 10 3
|
cvrval3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ ( 𝑌 ∨ 𝑞 ) = 𝑋 ) ) ) |
22 |
13 17 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ ( 𝑌 ∨ 𝑞 ) = 𝑋 ) ) ) |
23 |
|
eqcom |
⊢ ( ( 𝑌 ∨ 𝑞 ) = 𝑋 ↔ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) |
24 |
23
|
anbi2i |
⊢ ( ( ¬ 𝑞 ≤ 𝑌 ∧ ( 𝑌 ∨ 𝑞 ) = 𝑋 ) ↔ ( ¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) ) |
25 |
24
|
rexbii |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ ( 𝑌 ∨ 𝑞 ) = 𝑋 ) ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) ) |
26 |
22 25
|
bitrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) ) ) |
27 |
12 26
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) ) |