Step |
Hyp |
Ref |
Expression |
1 |
|
lplnset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lplnset.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
3 |
|
lplnset.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
4 |
|
lplnset.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌 ∈ 𝐵 ) |
6 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐶 𝑌 ↔ 𝑋 𝐶 𝑌 ) ) |
7 |
6
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝑁 ∧ 𝑋 𝐶 𝑌 ) → ∃ 𝑥 ∈ 𝑁 𝑥 𝐶 𝑌 ) |
8 |
7
|
3ad2antl3 |
⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → ∃ 𝑥 ∈ 𝑁 𝑥 𝐶 𝑌 ) |
9 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → 𝐾 ∈ 𝐷 ) |
10 |
1 2 3 4
|
islpln |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑌 ∈ 𝑃 ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝑁 𝑥 𝐶 𝑌 ) ) ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑌 ∈ 𝑃 ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝑁 𝑥 𝐶 𝑌 ) ) ) |
12 |
5 8 11
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌 ∈ 𝑃 ) |