Metamath Proof Explorer


Theorem lplni2

Description: The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses lplni2.l = ( le ‘ 𝐾 )
lplni2.j = ( join ‘ 𝐾 )
lplni2.a 𝐴 = ( Atoms ‘ 𝐾 )
lplni2.p 𝑃 = ( LPlanes ‘ 𝐾 )
Assertion lplni2 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ( ( 𝑄 𝑅 ) 𝑆 ) ∈ 𝑃 )

Proof

Step Hyp Ref Expression
1 lplni2.l = ( le ‘ 𝐾 )
2 lplni2.j = ( join ‘ 𝐾 )
3 lplni2.a 𝐴 = ( Atoms ‘ 𝐾 )
4 lplni2.p 𝑃 = ( LPlanes ‘ 𝐾 )
5 simp2 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) )
6 simp3l ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → 𝑄𝑅 )
7 simp3r ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ¬ 𝑆 ( 𝑄 𝑅 ) )
8 eqidd ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑆 ) )
9 neeq1 ( 𝑞 = 𝑄 → ( 𝑞𝑟𝑄𝑟 ) )
10 oveq1 ( 𝑞 = 𝑄 → ( 𝑞 𝑟 ) = ( 𝑄 𝑟 ) )
11 10 breq2d ( 𝑞 = 𝑄 → ( 𝑠 ( 𝑞 𝑟 ) ↔ 𝑠 ( 𝑄 𝑟 ) ) )
12 11 notbid ( 𝑞 = 𝑄 → ( ¬ 𝑠 ( 𝑞 𝑟 ) ↔ ¬ 𝑠 ( 𝑄 𝑟 ) ) )
13 10 oveq1d ( 𝑞 = 𝑄 → ( ( 𝑞 𝑟 ) 𝑠 ) = ( ( 𝑄 𝑟 ) 𝑠 ) )
14 13 eqeq2d ( 𝑞 = 𝑄 → ( ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑞 𝑟 ) 𝑠 ) ↔ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑟 ) 𝑠 ) ) )
15 9 12 14 3anbi123d ( 𝑞 = 𝑄 → ( ( 𝑞𝑟 ∧ ¬ 𝑠 ( 𝑞 𝑟 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑞 𝑟 ) 𝑠 ) ) ↔ ( 𝑄𝑟 ∧ ¬ 𝑠 ( 𝑄 𝑟 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑟 ) 𝑠 ) ) ) )
16 neeq2 ( 𝑟 = 𝑅 → ( 𝑄𝑟𝑄𝑅 ) )
17 oveq2 ( 𝑟 = 𝑅 → ( 𝑄 𝑟 ) = ( 𝑄 𝑅 ) )
18 17 breq2d ( 𝑟 = 𝑅 → ( 𝑠 ( 𝑄 𝑟 ) ↔ 𝑠 ( 𝑄 𝑅 ) ) )
19 18 notbid ( 𝑟 = 𝑅 → ( ¬ 𝑠 ( 𝑄 𝑟 ) ↔ ¬ 𝑠 ( 𝑄 𝑅 ) ) )
20 17 oveq1d ( 𝑟 = 𝑅 → ( ( 𝑄 𝑟 ) 𝑠 ) = ( ( 𝑄 𝑅 ) 𝑠 ) )
21 20 eqeq2d ( 𝑟 = 𝑅 → ( ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑟 ) 𝑠 ) ↔ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑠 ) ) )
22 16 19 21 3anbi123d ( 𝑟 = 𝑅 → ( ( 𝑄𝑟 ∧ ¬ 𝑠 ( 𝑄 𝑟 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑟 ) 𝑠 ) ) ↔ ( 𝑄𝑅 ∧ ¬ 𝑠 ( 𝑄 𝑅 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑠 ) ) ) )
23 breq1 ( 𝑠 = 𝑆 → ( 𝑠 ( 𝑄 𝑅 ) ↔ 𝑆 ( 𝑄 𝑅 ) ) )
24 23 notbid ( 𝑠 = 𝑆 → ( ¬ 𝑠 ( 𝑄 𝑅 ) ↔ ¬ 𝑆 ( 𝑄 𝑅 ) ) )
25 oveq2 ( 𝑠 = 𝑆 → ( ( 𝑄 𝑅 ) 𝑠 ) = ( ( 𝑄 𝑅 ) 𝑆 ) )
26 25 eqeq2d ( 𝑠 = 𝑆 → ( ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑠 ) ↔ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑆 ) ) )
27 24 26 3anbi23d ( 𝑠 = 𝑆 → ( ( 𝑄𝑅 ∧ ¬ 𝑠 ( 𝑄 𝑅 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑠 ) ) ↔ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑆 ) ) ) )
28 15 22 27 rspc3ev ( ( ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑄 𝑅 ) 𝑆 ) ) ) → ∃ 𝑞𝐴𝑟𝐴𝑠𝐴 ( 𝑞𝑟 ∧ ¬ 𝑠 ( 𝑞 𝑟 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑞 𝑟 ) 𝑠 ) ) )
29 5 6 7 8 28 syl13anc ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ∃ 𝑞𝐴𝑟𝐴𝑠𝐴 ( 𝑞𝑟 ∧ ¬ 𝑠 ( 𝑞 𝑟 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑞 𝑟 ) 𝑠 ) ) )
30 simp1 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → 𝐾 ∈ HL )
31 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
32 31 3ad2ant1 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → 𝐾 ∈ Lat )
33 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → 𝑄𝐴 )
34 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → 𝑅𝐴 )
35 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
36 35 2 3 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
37 30 33 34 36 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
38 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → 𝑆𝐴 )
39 35 3 atbase ( 𝑆𝐴𝑆 ∈ ( Base ‘ 𝐾 ) )
40 38 39 syl ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) )
41 35 2 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑅 ) 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
42 32 37 40 41 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ( ( 𝑄 𝑅 ) 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
43 35 1 2 3 4 islpln5 ( ( 𝐾 ∈ HL ∧ ( ( 𝑄 𝑅 ) 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑄 𝑅 ) 𝑆 ) ∈ 𝑃 ↔ ∃ 𝑞𝐴𝑟𝐴𝑠𝐴 ( 𝑞𝑟 ∧ ¬ 𝑠 ( 𝑞 𝑟 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑞 𝑟 ) 𝑠 ) ) ) )
44 30 42 43 syl2anc ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ( ( ( 𝑄 𝑅 ) 𝑆 ) ∈ 𝑃 ↔ ∃ 𝑞𝐴𝑟𝐴𝑠𝐴 ( 𝑞𝑟 ∧ ¬ 𝑠 ( 𝑞 𝑟 ) ∧ ( ( 𝑄 𝑅 ) 𝑆 ) = ( ( 𝑞 𝑟 ) 𝑠 ) ) ) )
45 29 44 mpbird ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ) ) → ( ( 𝑄 𝑅 ) 𝑆 ) ∈ 𝑃 )