Step |
Hyp |
Ref |
Expression |
1 |
|
lplni2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lplni2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
lplni2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
lplni2.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
5 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) |
6 |
|
simp3l |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ≠ 𝑅 ) |
7 |
|
simp3r |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) |
8 |
|
eqidd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) |
9 |
|
neeq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ≠ 𝑟 ↔ 𝑄 ≠ 𝑟 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑞 = 𝑄 → ( 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑠 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
12 |
11
|
notbid |
⊢ ( 𝑞 = 𝑄 → ( ¬ 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ¬ 𝑠 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
13 |
10
|
oveq1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ∨ 𝑟 ) ∨ 𝑠 ) = ( ( 𝑄 ∨ 𝑟 ) ∨ 𝑠 ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑞 ∨ 𝑟 ) ∨ 𝑠 ) ↔ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑟 ) ∨ 𝑠 ) ) ) |
15 |
9 12 14
|
3anbi123d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑞 ∨ 𝑟 ) ∨ 𝑠 ) ) ↔ ( 𝑄 ≠ 𝑟 ∧ ¬ 𝑠 ≤ ( 𝑄 ∨ 𝑟 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑟 ) ∨ 𝑠 ) ) ) ) |
16 |
|
neeq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 ≠ 𝑟 ↔ 𝑄 ≠ 𝑅 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑅 ) ) |
18 |
17
|
breq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑠 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑠 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
19 |
18
|
notbid |
⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑠 ≤ ( 𝑄 ∨ 𝑟 ) ↔ ¬ 𝑠 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
20 |
17
|
oveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 ∨ 𝑟 ) ∨ 𝑠 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑠 ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑟 ) ∨ 𝑠 ) ↔ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑠 ) ) ) |
22 |
16 19 21
|
3anbi123d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 ≠ 𝑟 ∧ ¬ 𝑠 ≤ ( 𝑄 ∨ 𝑟 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑟 ) ∨ 𝑠 ) ) ↔ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑠 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑠 ) ) ) ) |
23 |
|
breq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ≤ ( 𝑄 ∨ 𝑅 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
24 |
23
|
notbid |
⊢ ( 𝑠 = 𝑆 → ( ¬ 𝑠 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑠 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑠 ) ↔ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ) |
27 |
24 26
|
3anbi23d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑠 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑠 ) ) ↔ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ) ) |
28 |
15 22 27
|
rspc3ev |
⊢ ( ( ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ) ) → ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑞 ∨ 𝑟 ) ∨ 𝑠 ) ) ) |
29 |
5 6 7 8 28
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑞 ∨ 𝑟 ) ∨ 𝑠 ) ) ) |
30 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝐾 ∈ HL ) |
31 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
32 |
31
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝐾 ∈ Lat ) |
33 |
|
simp21 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ∈ 𝐴 ) |
34 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ∈ 𝐴 ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
36 |
35 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
37 |
30 33 34 36
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
|
simp23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ∈ 𝐴 ) |
39 |
35 3
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
40 |
38 39
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
41 |
35 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
32 37 40 41
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
35 1 2 3 4
|
islpln5 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ∈ 𝑃 ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑞 ∨ 𝑟 ) ∨ 𝑠 ) ) ) ) |
44 |
30 42 43
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ∈ 𝑃 ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) = ( ( 𝑞 ∨ 𝑟 ) ∨ 𝑠 ) ) ) ) |
45 |
29 44
|
mpbird |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ∈ 𝑃 ) |