| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lplnn0.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 2 |  | lplnn0.p | ⊢ 𝑃  =  ( LPlanes ‘ 𝐾 ) | 
						
							| 3 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 | 3 | atex | ⊢ ( 𝐾  ∈  HL  →  ( Atoms ‘ 𝐾 )  ≠  ∅ ) | 
						
							| 5 |  | n0 | ⊢ ( ( Atoms ‘ 𝐾 )  ≠  ∅  ↔  ∃ 𝑝 𝑝  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( 𝐾  ∈  HL  →  ∃ 𝑝 𝑝  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  →  ∃ 𝑝 𝑝  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 8 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 9 | 8 3 2 | lplnnleat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ¬  𝑋 ( le ‘ 𝐾 ) 𝑝 ) | 
						
							| 10 | 9 | 3expa | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ¬  𝑋 ( le ‘ 𝐾 ) 𝑝 ) | 
						
							| 11 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝐾  ∈  OP ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 14 | 13 3 | atbase | ⊢ ( 𝑝  ∈  ( Atoms ‘ 𝐾 )  →  𝑝  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝑝  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 16 | 13 8 1 | op0le | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑝  ∈  ( Base ‘ 𝐾 ) )  →   0  ( le ‘ 𝐾 ) 𝑝 ) | 
						
							| 17 | 12 15 16 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →   0  ( le ‘ 𝐾 ) 𝑝 ) | 
						
							| 18 |  | breq1 | ⊢ ( 𝑋  =   0   →  ( 𝑋 ( le ‘ 𝐾 ) 𝑝  ↔   0  ( le ‘ 𝐾 ) 𝑝 ) ) | 
						
							| 19 | 17 18 | syl5ibrcom | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( 𝑋  =   0   →  𝑋 ( le ‘ 𝐾 ) 𝑝 ) ) | 
						
							| 20 | 19 | necon3bd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ¬  𝑋 ( le ‘ 𝐾 ) 𝑝  →  𝑋  ≠   0  ) ) | 
						
							| 21 | 10 20 | mpd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝑋  ≠   0  ) | 
						
							| 22 | 7 21 | exlimddv | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃 )  →  𝑋  ≠   0  ) |