| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lplnnleat.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | lplnnleat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | lplnnleat.p | ⊢ 𝑃  =  ( LPlanes ‘ 𝐾 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  HL ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃  ∧  𝑄  ∈  𝐴 )  →  𝑋  ∈  𝑃 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃  ∧  𝑄  ∈  𝐴 )  →  𝑄  ∈  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 8 | 1 7 2 3 | lplnnle2at | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝑃  ∧  𝑄  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ¬  𝑋  ≤  ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) ) | 
						
							| 9 | 4 5 6 6 8 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃  ∧  𝑄  ∈  𝐴 )  →  ¬  𝑋  ≤  ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) ) | 
						
							| 10 | 7 2 | hlatjidm | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴 )  →  ( 𝑄 ( join ‘ 𝐾 ) 𝑄 )  =  𝑄 ) | 
						
							| 11 | 10 | 3adant2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃  ∧  𝑄  ∈  𝐴 )  →  ( 𝑄 ( join ‘ 𝐾 ) 𝑄 )  =  𝑄 ) | 
						
							| 12 | 11 | breq2d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃  ∧  𝑄  ∈  𝐴 )  →  ( 𝑋  ≤  ( 𝑄 ( join ‘ 𝐾 ) 𝑄 )  ↔  𝑋  ≤  𝑄 ) ) | 
						
							| 13 | 9 12 | mtbid | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑃  ∧  𝑄  ∈  𝐴 )  →  ¬  𝑋  ≤  𝑄 ) |