Metamath Proof Explorer


Theorem lplnnleat

Description: A lattice plane cannot majorize an atom. (Contributed by NM, 14-Jul-2012)

Ref Expression
Hypotheses lplnnleat.l = ( le ‘ 𝐾 )
lplnnleat.a 𝐴 = ( Atoms ‘ 𝐾 )
lplnnleat.p 𝑃 = ( LPlanes ‘ 𝐾 )
Assertion lplnnleat ( ( 𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴 ) → ¬ 𝑋 𝑄 )

Proof

Step Hyp Ref Expression
1 lplnnleat.l = ( le ‘ 𝐾 )
2 lplnnleat.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lplnnleat.p 𝑃 = ( LPlanes ‘ 𝐾 )
4 simp1 ( ( 𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴 ) → 𝐾 ∈ HL )
5 simp2 ( ( 𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴 ) → 𝑋𝑃 )
6 simp3 ( ( 𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴 ) → 𝑄𝐴 )
7 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
8 1 7 2 3 lplnnle2at ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑃𝑄𝐴𝑄𝐴 ) ) → ¬ 𝑋 ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) )
9 4 5 6 6 8 syl13anc ( ( 𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴 ) → ¬ 𝑋 ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) )
10 7 2 hlatjidm ( ( 𝐾 ∈ HL ∧ 𝑄𝐴 ) → ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) = 𝑄 )
11 10 3adant2 ( ( 𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴 ) → ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) = 𝑄 )
12 11 breq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴 ) → ( 𝑋 ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) ↔ 𝑋 𝑄 ) )
13 9 12 mtbid ( ( 𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴 ) → ¬ 𝑋 𝑄 )