Step |
Hyp |
Ref |
Expression |
1 |
|
lplnnleat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lplnnleat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
lplnnleat.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
5 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) → 𝑋 ∈ 𝑃 ) |
6 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
7 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
8 |
1 7 2 3
|
lplnnle2at |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ¬ 𝑋 ≤ ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) ) |
9 |
4 5 6 6 8
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) → ¬ 𝑋 ≤ ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) ) |
10 |
7 2
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) = 𝑄 ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) = 𝑄 ) |
12 |
11
|
breq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑋 ≤ ( 𝑄 ( join ‘ 𝐾 ) 𝑄 ) ↔ 𝑋 ≤ 𝑄 ) ) |
13 |
9 12
|
mtbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) → ¬ 𝑋 ≤ 𝑄 ) |