Metamath Proof Explorer


Theorem lplnri1

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses lplnri1.j = ( join ‘ 𝐾 )
lplnri1.a 𝐴 = ( Atoms ‘ 𝐾 )
lplnri1.p 𝑃 = ( LPlanes ‘ 𝐾 )
lplnri1.y 𝑌 = ( ( 𝑄 𝑅 ) 𝑆 )
Assertion lplnri1 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → 𝑄𝑅 )

Proof

Step Hyp Ref Expression
1 lplnri1.j = ( join ‘ 𝐾 )
2 lplnri1.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lplnri1.p 𝑃 = ( LPlanes ‘ 𝐾 )
4 lplnri1.y 𝑌 = ( ( 𝑄 𝑅 ) 𝑆 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 5 1 2 3 4 islpln2ah ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ) → ( 𝑌𝑃 ↔ ( 𝑄𝑅 ∧ ¬ 𝑆 ( le ‘ 𝐾 ) ( 𝑄 𝑅 ) ) ) )
7 6 biimp3a ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → ( 𝑄𝑅 ∧ ¬ 𝑆 ( le ‘ 𝐾 ) ( 𝑄 𝑅 ) ) )
8 7 simpld ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → 𝑄𝑅 )