Metamath Proof Explorer


Theorem lplnri3N

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnri1.j = ( join ‘ 𝐾 )
lplnri1.a 𝐴 = ( Atoms ‘ 𝐾 )
lplnri1.p 𝑃 = ( LPlanes ‘ 𝐾 )
lplnri1.y 𝑌 = ( ( 𝑄 𝑅 ) 𝑆 )
Assertion lplnri3N ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → 𝑅𝑆 )

Proof

Step Hyp Ref Expression
1 lplnri1.j = ( join ‘ 𝐾 )
2 lplnri1.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lplnri1.p 𝑃 = ( LPlanes ‘ 𝐾 )
4 lplnri1.y 𝑌 = ( ( 𝑄 𝑅 ) 𝑆 )
5 simp1 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → 𝐾 ∈ HL )
6 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → 𝑅𝐴 )
7 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → 𝑄𝐴 )
8 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → 𝑆𝐴 )
9 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
10 9 1 2 3 4 lplnribN ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → ¬ 𝑅 ( le ‘ 𝐾 ) ( 𝑄 𝑆 ) )
11 9 1 2 atnlej2 ( ( 𝐾 ∈ HL ∧ ( 𝑅𝐴𝑄𝐴𝑆𝐴 ) ∧ ¬ 𝑅 ( le ‘ 𝐾 ) ( 𝑄 𝑆 ) ) → 𝑅𝑆 )
12 5 6 7 8 10 11 syl131anc ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → 𝑅𝑆 )