Step |
Hyp |
Ref |
Expression |
1 |
|
lplnri1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
lplnri1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
lplnri1.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
4 |
|
lplnri1.y |
⊢ 𝑌 = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) |
5 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑃 ) → 𝐾 ∈ HL ) |
6 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑃 ) → 𝑅 ∈ 𝐴 ) |
7 |
|
simp21 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑃 ) → 𝑄 ∈ 𝐴 ) |
8 |
|
simp23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑃 ) → 𝑆 ∈ 𝐴 ) |
9 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
10 |
9 1 2 3 4
|
lplnribN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑃 ) → ¬ 𝑅 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑆 ) ) |
11 |
9 1 2
|
atnlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ¬ 𝑅 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑆 ) ) → 𝑅 ≠ 𝑆 ) |
12 |
5 6 7 8 10 11
|
syl131anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑃 ) → 𝑅 ≠ 𝑆 ) |