Metamath Proof Explorer


Theorem lplnset

Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses lplnset.b 𝐵 = ( Base ‘ 𝐾 )
lplnset.c 𝐶 = ( ⋖ ‘ 𝐾 )
lplnset.n 𝑁 = ( LLines ‘ 𝐾 )
lplnset.p 𝑃 = ( LPlanes ‘ 𝐾 )
Assertion lplnset ( 𝐾𝐴𝑃 = { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } )

Proof

Step Hyp Ref Expression
1 lplnset.b 𝐵 = ( Base ‘ 𝐾 )
2 lplnset.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 lplnset.n 𝑁 = ( LLines ‘ 𝐾 )
4 lplnset.p 𝑃 = ( LPlanes ‘ 𝐾 )
5 elex ( 𝐾𝐴𝐾 ∈ V )
6 fveq2 ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) )
7 6 1 eqtr4di ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 )
8 fveq2 ( 𝑘 = 𝐾 → ( LLines ‘ 𝑘 ) = ( LLines ‘ 𝐾 ) )
9 8 3 eqtr4di ( 𝑘 = 𝐾 → ( LLines ‘ 𝑘 ) = 𝑁 )
10 fveq2 ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = ( ⋖ ‘ 𝐾 ) )
11 10 2 eqtr4di ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = 𝐶 )
12 11 breqd ( 𝑘 = 𝐾 → ( 𝑦 ( ⋖ ‘ 𝑘 ) 𝑥𝑦 𝐶 𝑥 ) )
13 9 12 rexeqbidv ( 𝑘 = 𝐾 → ( ∃ 𝑦 ∈ ( LLines ‘ 𝑘 ) 𝑦 ( ⋖ ‘ 𝑘 ) 𝑥 ↔ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 ) )
14 7 13 rabeqbidv ( 𝑘 = 𝐾 → { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑦 ∈ ( LLines ‘ 𝑘 ) 𝑦 ( ⋖ ‘ 𝑘 ) 𝑥 } = { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } )
15 df-lplanes LPlanes = ( 𝑘 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑘 ) ∣ ∃ 𝑦 ∈ ( LLines ‘ 𝑘 ) 𝑦 ( ⋖ ‘ 𝑘 ) 𝑥 } )
16 1 fvexi 𝐵 ∈ V
17 16 rabex { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } ∈ V
18 14 15 17 fvmpt ( 𝐾 ∈ V → ( LPlanes ‘ 𝐾 ) = { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } )
19 4 18 syl5eq ( 𝐾 ∈ V → 𝑃 = { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } )
20 5 19 syl ( 𝐾𝐴𝑃 = { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } )