| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpfval.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝐽 ∈ Top ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ 𝑋 ) |
| 4 |
3
|
ssdifssd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
| 5 |
|
simp3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑆 ) |
| 6 |
5
|
ssdifd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑇 ∖ { 𝑥 } ) ⊆ ( 𝑆 ∖ { 𝑥 } ) ) |
| 7 |
1
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ∧ ( 𝑇 ∖ { 𝑥 } ) ⊆ ( 𝑆 ∖ { 𝑥 } ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 8 |
2 4 6 7
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 9 |
8
|
sseld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 10 |
5 3
|
sstrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
| 11 |
1
|
islp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) |
| 12 |
2 10 11
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) |
| 13 |
1
|
islp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 14 |
2 3 13
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 15 |
9 12 14
|
3imtr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) → 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 16 |
15
|
ssrdv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |