Step |
Hyp |
Ref |
Expression |
1 |
|
lptioo1cn.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
lptioo1cn.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
lptioo1cn.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
lptioo1cn.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
5 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
6 |
5 3 2 4
|
lptioo1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ( limPt ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
7 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
8 |
7
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
11 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
12 |
10 11
|
sseqtri |
⊢ ℝ ⊆ ∪ ( TopOpen ‘ ℂfld ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ∪ ( TopOpen ‘ ℂfld ) ) |
14 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
16 |
|
eqid |
⊢ ∪ ( TopOpen ‘ ℂfld ) = ∪ ( TopOpen ‘ ℂfld ) |
17 |
7
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
18 |
16 17
|
restlp |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ℝ ⊆ ∪ ( TopOpen ‘ ℂfld ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ( limPt ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∩ ℝ ) ) |
19 |
9 13 15 18
|
syl3anc |
⊢ ( 𝜑 → ( ( limPt ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∩ ℝ ) ) |
20 |
6 19
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∩ ℝ ) ) |
21 |
|
elin |
⊢ ( 𝐴 ∈ ( ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∩ ℝ ) ↔ ( 𝐴 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ) |
22 |
20 21
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
24 |
1
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = 𝐽 |
25 |
24
|
fveq2i |
⊢ ( limPt ‘ ( TopOpen ‘ ℂfld ) ) = ( limPt ‘ 𝐽 ) |
26 |
25
|
fveq1i |
⊢ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 (,) 𝐵 ) ) |
27 |
23 26
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |