Step |
Hyp |
Ref |
Expression |
1 |
|
lpfval.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
lpfval |
⊢ ( 𝐽 ∈ Top → ( limPt ‘ 𝐽 ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝐽 ∈ Top → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) ‘ 𝑆 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) ‘ 𝑆 ) ) |
5 |
|
eqid |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) |
6 |
|
difeq1 |
⊢ ( 𝑦 = 𝑆 → ( 𝑦 ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑥 } ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑦 = 𝑆 → ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝑦 = 𝑆 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
9 |
8
|
abbidv |
⊢ ( 𝑦 = 𝑆 → { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |
10 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
11 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
14 |
10
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
15 |
|
ssdifss |
⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
16 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ⊆ 𝑋 ) |
17 |
16
|
sseld |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝑋 ) ) |
18 |
15 17
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝑋 ) ) |
19 |
18
|
abssdv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ⊆ 𝑋 ) |
20 |
14 19
|
ssexd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ∈ V ) |
21 |
5 9 13 20
|
fvmptd3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 ↦ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ∖ { 𝑥 } ) ) } ) ‘ 𝑆 ) = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |
22 |
4 21
|
eqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |