| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpvtx.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  𝐺  ∈  UHGraph ) | 
						
							| 3 | 1 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  𝐼 ) | 
						
							| 4 | 3 | funfnd | ⊢ ( 𝐺  ∈  UHGraph  →  𝐼  Fn  dom  𝐼 ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  𝐼  Fn  dom  𝐼 ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  𝐽  ∈  dom  𝐼 ) | 
						
							| 7 | 1 | uhgrn0 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐼  Fn  dom  𝐼  ∧  𝐽  ∈  dom  𝐼 )  →  ( 𝐼 ‘ 𝐽 )  ≠  ∅ ) | 
						
							| 8 | 2 5 6 7 | syl3anc | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  ( 𝐼 ‘ 𝐽 )  ≠  ∅ ) | 
						
							| 9 |  | neeq1 | ⊢ ( ( 𝐼 ‘ 𝐽 )  =  { 𝐴 }  →  ( ( 𝐼 ‘ 𝐽 )  ≠  ∅  ↔  { 𝐴 }  ≠  ∅ ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( ( 𝐼 ‘ 𝐽 )  =  { 𝐴 }  →  ( ( 𝐼 ‘ 𝐽 )  ≠  ∅  →  { 𝐴 }  ≠  ∅ ) ) | 
						
							| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  ( ( 𝐼 ‘ 𝐽 )  ≠  ∅  →  { 𝐴 }  ≠  ∅ ) ) | 
						
							| 12 | 8 11 | mpd | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  { 𝐴 }  ≠  ∅ ) | 
						
							| 13 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 14 | 13 1 | uhgrss | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼 )  →  ( 𝐼 ‘ 𝐽 )  ⊆  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  ( 𝐼 ‘ 𝐽 )  ⊆  ( Vtx ‘ 𝐺 ) ) | 
						
							| 16 |  | sseq1 | ⊢ ( ( 𝐼 ‘ 𝐽 )  =  { 𝐴 }  →  ( ( 𝐼 ‘ 𝐽 )  ⊆  ( Vtx ‘ 𝐺 )  ↔  { 𝐴 }  ⊆  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  ( ( 𝐼 ‘ 𝐽 )  ⊆  ( Vtx ‘ 𝐺 )  ↔  { 𝐴 }  ⊆  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 18 | 15 17 | mpbid | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  { 𝐴 }  ⊆  ( Vtx ‘ 𝐺 ) ) | 
						
							| 19 |  | snnzb | ⊢ ( 𝐴  ∈  V  ↔  { 𝐴 }  ≠  ∅ ) | 
						
							| 20 |  | snssg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ↔  { 𝐴 }  ⊆  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 21 | 19 20 | sylbir | ⊢ ( { 𝐴 }  ≠  ∅  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ↔  { 𝐴 }  ⊆  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 22 | 18 21 | syl5ibrcom | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  ( { 𝐴 }  ≠  ∅  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 23 | 12 22 | mpd | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐽  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 } )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) |