| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lrrec.1 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } |
| 2 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ↔ 𝐴 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( L ‘ 𝑦 ) = ( L ‘ 𝐵 ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( R ‘ 𝑦 ) = ( R ‘ 𝐵 ) ) |
| 5 |
3 4
|
uneq12d |
⊢ ( 𝑦 = 𝐵 → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) = ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ↔ 𝐴 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) ) |
| 7 |
2 6 1
|
brabg |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 𝑅 𝐵 ↔ 𝐴 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) ) |