Step |
Hyp |
Ref |
Expression |
1 |
|
lsmcom.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝐺 ∈ Abel ) |
3 |
|
simp2r |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
simp3l |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
1
|
lsmcom |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑅 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑅 ) ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑅 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑅 ) ) |
7 |
6
|
oveq2d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
8 |
|
simp2l |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ) |
9 |
1
|
lsmass |
⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) ) |
10 |
8 3 4 9
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) ) |
11 |
1
|
lsmass |
⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
12 |
8 4 3 11
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
13 |
7 10 12
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) ) |
15 |
1
|
lsmsubg2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
16 |
2 8 3 15
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
|
simp3r |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
18 |
1
|
lsmass |
⊢ ( ( ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) |
19 |
16 4 17 18
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) |
20 |
1
|
lsmsubg2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
21 |
2 8 4 20
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
22 |
1
|
lsmass |
⊢ ( ( ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |
23 |
21 3 17 22
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |
24 |
14 19 23
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |