| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lsmcl.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ Abel ) |
| 5 |
1
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 6 |
5
|
3adant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 7 |
1
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 8 |
7
|
3adant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 9 |
2
|
lsmsubg2 |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 10 |
4 6 8 9
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 12 |
11 2
|
lsmelval |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑑 ∈ 𝑇 ∃ 𝑒 ∈ 𝑈 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ) |
| 13 |
6 8 12
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑑 ∈ 𝑇 ∃ 𝑒 ∈ 𝑈 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑑 ∈ 𝑇 ∃ 𝑒 ∈ 𝑈 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ) |
| 15 |
|
simpll1 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
| 16 |
|
simplr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 |
|
simpll2 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑇 ∈ 𝑆 ) |
| 18 |
|
simprl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑑 ∈ 𝑇 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 20 |
19 1
|
lssel |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑑 ∈ 𝑇 ) → 𝑑 ∈ ( Base ‘ 𝑊 ) ) |
| 21 |
17 18 20
|
syl2anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑑 ∈ ( Base ‘ 𝑊 ) ) |
| 22 |
|
simpll3 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
| 23 |
|
simprr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑒 ∈ 𝑈 ) |
| 24 |
19 1
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑒 ∈ 𝑈 ) → 𝑒 ∈ ( Base ‘ 𝑊 ) ) |
| 25 |
22 23 24
|
syl2anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑒 ∈ ( Base ‘ 𝑊 ) ) |
| 26 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 27 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 29 |
19 11 26 27 28
|
lmodvsdi |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑑 ∈ ( Base ‘ 𝑊 ) ∧ 𝑒 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) |
| 30 |
15 16 21 25 29
|
syl13anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) |
| 31 |
15 17 5
|
syl2anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 |
15 22 7
|
syl2anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 33 |
26 27 28 1
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑑 ∈ 𝑇 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ∈ 𝑇 ) |
| 34 |
15 17 16 18 33
|
syl22anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ∈ 𝑇 ) |
| 35 |
26 27 28 1
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ∈ 𝑈 ) |
| 36 |
15 22 16 23 35
|
syl22anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ∈ 𝑈 ) |
| 37 |
11 2
|
lsmelvali |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ∈ 𝑇 ∧ ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ∈ 𝑈 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 38 |
31 32 34 36 37
|
syl22anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 39 |
30 38
|
eqeltrd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 40 |
|
oveq2 |
⊢ ( 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) = ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ) |
| 41 |
40
|
eleq1d |
⊢ ( 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 42 |
39 41
|
syl5ibrcom |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 43 |
42
|
rexlimdvva |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ∃ 𝑑 ∈ 𝑇 ∃ 𝑒 ∈ 𝑈 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 44 |
14 43
|
sylbid |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 45 |
44
|
impr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 46 |
45
|
ralrimivva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 47 |
26 28 19 27 1
|
islss4 |
⊢ ( 𝑊 ∈ LMod → ( ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ↔ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 48 |
47
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ↔ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 49 |
10 46 48
|
mpbir2and |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |