Step |
Hyp |
Ref |
Expression |
1 |
|
lsmcntz.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
|
lsmcntz.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
lsmcntz.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
lsmcntz.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
lsmcntz.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
6 |
1 3 4 2 5
|
lsmcntz |
⊢ ( 𝜑 → ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑈 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) ) |
7 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
8 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
9 |
2 7 8
|
3syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
11 |
10
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
13 |
10
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
15 |
10 1
|
lsmssv |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) |
16 |
9 12 14 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) |
17 |
10
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
19 |
10 5
|
cntzrec |
⊢ ( ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
20 |
16 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
21 |
10 5
|
cntzrec |
⊢ ( ( 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
22 |
12 18 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
23 |
10 5
|
cntzrec |
⊢ ( ( 𝑈 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑈 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) |
24 |
14 18 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) |
25 |
22 24
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑈 ⊆ ( 𝑍 ‘ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) ) |
26 |
6 20 25
|
3bitr3d |
⊢ ( 𝜑 → ( 𝑆 ⊆ ( 𝑍 ‘ ( 𝑇 ⊕ 𝑈 ) ) ↔ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) ) |