| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmcntz.p | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							lsmcntz.s | 
							⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lsmcntz.t | 
							⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							lsmcntz.u | 
							⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							lsmdisj.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							lsmdisj.i | 
							⊢ ( 𝜑  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 7 | 
							
								1
							 | 
							lsmub1 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑆  ⊆  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 8 | 
							
								2 3 7
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑆  ⊆  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ssrind | 
							⊢ ( 𝜑  →  ( 𝑆  ∩  𝑈 )  ⊆  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 ) )  | 
						
						
							| 10 | 
							
								9 6
							 | 
							sseqtrd | 
							⊢ ( 𝜑  →  ( 𝑆  ∩  𝑈 )  ⊆  {  0  } )  | 
						
						
							| 11 | 
							
								5
							 | 
							subg0cl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑆 )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							syl | 
							⊢ ( 𝜑  →   0   ∈  𝑆 )  | 
						
						
							| 13 | 
							
								5
							 | 
							subg0cl | 
							⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑈 )  | 
						
						
							| 14 | 
							
								4 13
							 | 
							syl | 
							⊢ ( 𝜑  →   0   ∈  𝑈 )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							elind | 
							⊢ ( 𝜑  →   0   ∈  ( 𝑆  ∩  𝑈 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							snssd | 
							⊢ ( 𝜑  →  {  0  }  ⊆  ( 𝑆  ∩  𝑈 ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							eqssd | 
							⊢ ( 𝜑  →  ( 𝑆  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 18 | 
							
								1
							 | 
							lsmub2 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑇  ⊆  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 19 | 
							
								2 3 18
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ssrind | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  ⊆  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 ) )  | 
						
						
							| 21 | 
							
								20 6
							 | 
							sseqtrd | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  ⊆  {  0  } )  | 
						
						
							| 22 | 
							
								5
							 | 
							subg0cl | 
							⊢ ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑇 )  | 
						
						
							| 23 | 
							
								3 22
							 | 
							syl | 
							⊢ ( 𝜑  →   0   ∈  𝑇 )  | 
						
						
							| 24 | 
							
								23 14
							 | 
							elind | 
							⊢ ( 𝜑  →   0   ∈  ( 𝑇  ∩  𝑈 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							snssd | 
							⊢ ( 𝜑  →  {  0  }  ⊆  ( 𝑇  ∩  𝑈 ) )  | 
						
						
							| 26 | 
							
								21 25
							 | 
							eqssd | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 27 | 
							
								17 26
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ( 𝑆  ∩  𝑈 )  =  {  0  }  ∧  ( 𝑇  ∩  𝑈 )  =  {  0  } ) )  |