| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmcntz.p | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							lsmcntz.s | 
							⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lsmcntz.t | 
							⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							lsmcntz.u | 
							⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							lsmdisj.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							lsmdisj.i | 
							⊢ ( 𝜑  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 7 | 
							
								
							 | 
							lsmdisj2.i | 
							⊢ ( 𝜑  →  ( 𝑆  ∩  𝑇 )  =  {  0  } )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							lsmelval | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑥  ∈  ( 𝑆  ⊕  𝑈 )  ↔  ∃ 𝑠  ∈  𝑆 ∃ 𝑢  ∈  𝑈 𝑥  =  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) )  | 
						
						
							| 10 | 
							
								2 4 9
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑆  ⊕  𝑈 )  ↔  ∃ 𝑠  ∈  𝑆 ∃ 𝑢  ∈  𝑈 𝑥  =  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑠  ∈  𝑆 )  | 
						
						
							| 12 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝐺  ∈  Grp )  | 
						
						
							| 15 | 
							
								2
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 17 | 
							
								16
							 | 
							subgss | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 19 | 
							
								18 11
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑠  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 )  | 
						
						
							| 21 | 
							
								16 8 5 20
							 | 
							grplinv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑠  ∈  ( Base ‘ 𝐺 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 )  =   0  )  | 
						
						
							| 22 | 
							
								14 19 21
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 )  =   0  )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 )  =  (  0  ( +g ‘ 𝐺 ) 𝑢 ) )  | 
						
						
							| 24 | 
							
								20
							 | 
							subginvcl | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑠  ∈  𝑆 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑠 )  ∈  𝑆 )  | 
						
						
							| 25 | 
							
								15 11 24
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑠 )  ∈  𝑆 )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑠 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 27 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 28 | 
							
								16
							 | 
							subgss | 
							⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  →  𝑈  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑈  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑢  ∈  𝑈 )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑢  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 32 | 
							
								16 8
							 | 
							grpass | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 )  ∈  ( Base ‘ 𝐺 )  ∧  𝑠  ∈  ( Base ‘ 𝐺 )  ∧  𝑢  ∈  ( Base ‘ 𝐺 ) ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) )  | 
						
						
							| 33 | 
							
								14 26 19 31 32
							 | 
							syl13anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) )  | 
						
						
							| 34 | 
							
								16 8 5
							 | 
							grplid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  ( Base ‘ 𝐺 ) )  →  (  0  ( +g ‘ 𝐺 ) 𝑢 )  =  𝑢 )  | 
						
						
							| 35 | 
							
								14 31 34
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  (  0  ( +g ‘ 𝐺 ) 𝑢 )  =  𝑢 )  | 
						
						
							| 36 | 
							
								23 33 35
							 | 
							3eqtr3d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) )  =  𝑢 )  | 
						
						
							| 37 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  | 
						
						
							| 39 | 
							
								8 1
							 | 
							lsmelvali | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 )  ∈  𝑆  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) )  ∈  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 40 | 
							
								15 37 25 38 39
							 | 
							syl22anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) )  ∈  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑢  ∈  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 42 | 
							
								41 30
							 | 
							elind | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑢  ∈  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 ) )  | 
						
						
							| 43 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							eleqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑢  ∈  {  0  } )  | 
						
						
							| 45 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑢  ∈  {  0  }  →  𝑢  =   0  )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑢  =   0  )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  =  ( 𝑠 ( +g ‘ 𝐺 )  0  ) )  | 
						
						
							| 48 | 
							
								16 8 5
							 | 
							grprid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑠  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑠 ( +g ‘ 𝐺 )  0  )  =  𝑠 )  | 
						
						
							| 49 | 
							
								14 19 48
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( 𝑠 ( +g ‘ 𝐺 )  0  )  =  𝑠 )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  =  𝑠 )  | 
						
						
							| 51 | 
							
								50 38
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑠  ∈  𝑇 )  | 
						
						
							| 52 | 
							
								11 51
							 | 
							elind | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑠  ∈  ( 𝑆  ∩  𝑇 ) )  | 
						
						
							| 53 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( 𝑆  ∩  𝑇 )  =  {  0  } )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							eleqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑠  ∈  {  0  } )  | 
						
						
							| 55 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑠  ∈  {  0  }  →  𝑠  =   0  )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  𝑠  =   0  )  | 
						
						
							| 57 | 
							
								56 46
							 | 
							oveq12d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  =  (  0  ( +g ‘ 𝐺 )  0  ) )  | 
						
						
							| 58 | 
							
								16 5
							 | 
							grpidcl | 
							⊢ ( 𝐺  ∈  Grp  →   0   ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 59 | 
							
								16 8 5
							 | 
							grplid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧   0   ∈  ( Base ‘ 𝐺 ) )  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  )  | 
						
						
							| 60 | 
							
								13 58 59
							 | 
							syl2anc2 | 
							⊢ ( 𝜑  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  )  | 
						
						
							| 61 | 
							
								60
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  )  | 
						
						
							| 62 | 
							
								57 61
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  ∧  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 )  →  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  =   0  )  | 
						
						
							| 63 | 
							
								62
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  →  ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇  →  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  =   0  ) )  | 
						
						
							| 64 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  →  ( 𝑥  ∈  𝑇  ↔  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  →  ( 𝑥  =   0   ↔  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  =   0  ) )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  →  ( ( 𝑥  ∈  𝑇  →  𝑥  =   0  )  ↔  ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  ∈  𝑇  →  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  =   0  ) ) )  | 
						
						
							| 67 | 
							
								63 66
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  𝑆  ∧  𝑢  ∈  𝑈 ) )  →  ( 𝑥  =  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  →  ( 𝑥  ∈  𝑇  →  𝑥  =   0  ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							rexlimdvva | 
							⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  𝑆 ∃ 𝑢  ∈  𝑈 𝑥  =  ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 )  →  ( 𝑥  ∈  𝑇  →  𝑥  =   0  ) ) )  | 
						
						
							| 69 | 
							
								10 68
							 | 
							sylbid | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑆  ⊕  𝑈 )  →  ( 𝑥  ∈  𝑇  →  𝑥  =   0  ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							impcomd | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑇  ∧  𝑥  ∈  ( 𝑆  ⊕  𝑈 ) )  →  𝑥  =   0  ) )  | 
						
						
							| 71 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑥  ∈  ( 𝑇  ∩  ( 𝑆  ⊕  𝑈 ) )  ↔  ( 𝑥  ∈  𝑇  ∧  𝑥  ∈  ( 𝑆  ⊕  𝑈 ) ) )  | 
						
						
							| 72 | 
							
								
							 | 
							velsn | 
							⊢ ( 𝑥  ∈  {  0  }  ↔  𝑥  =   0  )  | 
						
						
							| 73 | 
							
								70 71 72
							 | 
							3imtr4g | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑇  ∩  ( 𝑆  ⊕  𝑈 ) )  →  𝑥  ∈  {  0  } ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							ssrdv | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  ( 𝑆  ⊕  𝑈 ) )  ⊆  {  0  } )  | 
						
						
							| 75 | 
							
								5
							 | 
							subg0cl | 
							⊢ ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑇 )  | 
						
						
							| 76 | 
							
								3 75
							 | 
							syl | 
							⊢ ( 𝜑  →   0   ∈  𝑇 )  | 
						
						
							| 77 | 
							
								1
							 | 
							lsmub1 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑆  ⊆  ( 𝑆  ⊕  𝑈 ) )  | 
						
						
							| 78 | 
							
								2 4 77
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑆  ⊆  ( 𝑆  ⊕  𝑈 ) )  | 
						
						
							| 79 | 
							
								5
							 | 
							subg0cl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑆 )  | 
						
						
							| 80 | 
							
								2 79
							 | 
							syl | 
							⊢ ( 𝜑  →   0   ∈  𝑆 )  | 
						
						
							| 81 | 
							
								78 80
							 | 
							sseldd | 
							⊢ ( 𝜑  →   0   ∈  ( 𝑆  ⊕  𝑈 ) )  | 
						
						
							| 82 | 
							
								76 81
							 | 
							elind | 
							⊢ ( 𝜑  →   0   ∈  ( 𝑇  ∩  ( 𝑆  ⊕  𝑈 ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							snssd | 
							⊢ ( 𝜑  →  {  0  }  ⊆  ( 𝑇  ∩  ( 𝑆  ⊕  𝑈 ) ) )  | 
						
						
							| 84 | 
							
								74 83
							 | 
							eqssd | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  ( 𝑆  ⊕  𝑈 ) )  =  {  0  } )  |