| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcntz.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 2 |
|
lsmcntz.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 3 |
|
lsmcntz.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
lsmcntz.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
lsmdisj.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 6 |
|
incom |
⊢ ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 |
|
incom |
⊢ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) |
| 11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ) |
| 12 |
10 11
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ) |
| 13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ 𝑈 ) = { 0 } ) |
| 14 |
1 7 8 9 5 12 13
|
lsmdisj2r |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) = { 0 } ) |
| 15 |
6 14
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) |
| 16 |
|
incom |
⊢ ( 𝑇 ∩ 𝑈 ) = ( 𝑈 ∩ 𝑇 ) |
| 17 |
1 8 9 7 5 11
|
lsmdisj |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ∩ 𝑇 ) = { 0 } ∧ ( 𝑈 ∩ 𝑇 ) = { 0 } ) ) |
| 18 |
17
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑈 ∩ 𝑇 ) = { 0 } ) |
| 19 |
16 18
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 20 |
15 19
|
jca |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) |
| 21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 24 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) |
| 25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 26 |
1 21 22 23 5 24 25
|
lsmdisj2r |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ) |
| 27 |
1 21 22 23 5 24
|
lsmdisjr |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) |
| 28 |
27
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ 𝑈 ) = { 0 } ) |
| 29 |
26 28
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) |
| 30 |
20 29
|
impbida |
⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) ) |