| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmcntz.p | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							lsmcntz.s | 
							⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lsmcntz.t | 
							⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							lsmcntz.u | 
							⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							lsmdisj.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							lsmdisj.i | 
							⊢ ( 𝜑  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 7 | 
							
								
							 | 
							lsmdisj2.i | 
							⊢ ( 𝜑  →  ( 𝑆  ∩  𝑇 )  =  {  0  } )  | 
						
						
							| 8 | 
							
								
							 | 
							lsmdisj3.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 9 | 
							
								
							 | 
							lsmdisj3.s | 
							⊢ ( 𝜑  →  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  | 
						
						
							| 10 | 
							
								1 8
							 | 
							lsmcom2 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  ( 𝑆  ⊕  𝑇 )  =  ( 𝑇  ⊕  𝑆 ) )  | 
						
						
							| 11 | 
							
								2 3 9 10
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑆  ⊕  𝑇 )  =  ( 𝑇  ⊕  𝑆 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ineq1d | 
							⊢ ( 𝜑  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  ( ( 𝑇  ⊕  𝑆 )  ∩  𝑈 ) )  | 
						
						
							| 13 | 
							
								12 6
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( ( 𝑇  ⊕  𝑆 )  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 14 | 
							
								
							 | 
							incom | 
							⊢ ( 𝑇  ∩  𝑆 )  =  ( 𝑆  ∩  𝑇 )  | 
						
						
							| 15 | 
							
								14 7
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑆 )  =  {  0  } )  | 
						
						
							| 16 | 
							
								1 3 2 4 5 13 15
							 | 
							lsmdisj2 | 
							⊢ ( 𝜑  →  ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) )  =  {  0  } )  |