Metamath Proof Explorer


Theorem lsmdisj3r

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p = ( LSSum ‘ 𝐺 )
lsmcntz.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
lsmcntz.t ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
lsmcntz.u ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
lsmdisj.o 0 = ( 0g𝐺 )
lsmdisjr.i ( 𝜑 → ( 𝑆 ∩ ( 𝑇 𝑈 ) ) = { 0 } )
lsmdisj2r.i ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
lsmdisj3r.z 𝑍 = ( Cntz ‘ 𝐺 )
lsmdisj3r.s ( 𝜑𝑇 ⊆ ( 𝑍𝑈 ) )
Assertion lsmdisj3r ( 𝜑 → ( ( 𝑆 𝑇 ) ∩ 𝑈 ) = { 0 } )

Proof

Step Hyp Ref Expression
1 lsmcntz.p = ( LSSum ‘ 𝐺 )
2 lsmcntz.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
3 lsmcntz.t ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
4 lsmcntz.u ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
5 lsmdisj.o 0 = ( 0g𝐺 )
6 lsmdisjr.i ( 𝜑 → ( 𝑆 ∩ ( 𝑇 𝑈 ) ) = { 0 } )
7 lsmdisj2r.i ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
8 lsmdisj3r.z 𝑍 = ( Cntz ‘ 𝐺 )
9 lsmdisj3r.s ( 𝜑𝑇 ⊆ ( 𝑍𝑈 ) )
10 1 8 lsmcom2 ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍𝑈 ) ) → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )
11 3 4 9 10 syl3anc ( 𝜑 → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )
12 11 ineq2d ( 𝜑 → ( 𝑆 ∩ ( 𝑇 𝑈 ) ) = ( 𝑆 ∩ ( 𝑈 𝑇 ) ) )
13 12 6 eqtr3d ( 𝜑 → ( 𝑆 ∩ ( 𝑈 𝑇 ) ) = { 0 } )
14 incom ( 𝑈𝑇 ) = ( 𝑇𝑈 )
15 14 7 eqtrid ( 𝜑 → ( 𝑈𝑇 ) = { 0 } )
16 1 2 4 3 5 13 15 lsmdisj2r ( 𝜑 → ( ( 𝑆 𝑇 ) ∩ 𝑈 ) = { 0 } )