| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmelpr.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsmelpr.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
lsmelpr.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 4 |
|
lsmelpr.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lsmelpr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
lsmelpr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
lsmelpr.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 9 |
1 8 2 4 6 7
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 |
1 8 2 4 9 5
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 11 |
1 2 3 4 6 7
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 12 |
11
|
sseq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ) ) |
| 13 |
10 12
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ⊕ ( 𝑁 ‘ { 𝑍 } ) ) ) ) |