Step |
Hyp |
Ref |
Expression |
1 |
|
lsmfval.v |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
lsmfval.a |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
lsmfval.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 𝑋 + 𝑌 ) = ( 𝑋 + 𝑌 ) |
5 |
|
rspceov |
⊢ ( ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ∧ ( 𝑋 + 𝑌 ) = ( 𝑋 + 𝑌 ) ) → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) |
6 |
4 5
|
mp3an3 |
⊢ ( ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ) → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) |
7 |
1 2 3
|
lsmelvalx |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( ( 𝑋 + 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) ) |
8 |
7
|
biimpar |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
9 |
6 8
|
sylan2 |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |