Metamath Proof Explorer


Theorem lsmelvalix

Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v 𝐵 = ( Base ‘ 𝐺 )
lsmfval.a + = ( +g𝐺 )
lsmfval.s = ( LSSum ‘ 𝐺 )
Assertion lsmelvalix ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ( 𝑋𝑇𝑌𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑇 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lsmfval.v 𝐵 = ( Base ‘ 𝐺 )
2 lsmfval.a + = ( +g𝐺 )
3 lsmfval.s = ( LSSum ‘ 𝐺 )
4 eqid ( 𝑋 + 𝑌 ) = ( 𝑋 + 𝑌 )
5 rspceov ( ( 𝑋𝑇𝑌𝑈 ∧ ( 𝑋 + 𝑌 ) = ( 𝑋 + 𝑌 ) ) → ∃ 𝑥𝑇𝑦𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) )
6 4 5 mp3an3 ( ( 𝑋𝑇𝑌𝑈 ) → ∃ 𝑥𝑇𝑦𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) )
7 1 2 3 lsmelvalx ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → ( ( 𝑋 + 𝑌 ) ∈ ( 𝑇 𝑈 ) ↔ ∃ 𝑥𝑇𝑦𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) )
8 7 biimpar ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ∃ 𝑥𝑇𝑦𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑇 𝑈 ) )
9 6 8 sylan2 ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ( 𝑋𝑇𝑌𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑇 𝑈 ) )