Step |
Hyp |
Ref |
Expression |
1 |
|
lsmelvalm.m |
⊢ − = ( -g ‘ 𝐺 ) |
2 |
|
lsmelvalm.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
lsmelvalm.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
lsmelvalm.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
lsmelvalmi.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑇 ) |
6 |
|
lsmelvalmi.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
7 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) |
8 |
|
rspceov |
⊢ ( ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ∧ ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 − 𝑌 ) = ( 𝑥 − 𝑦 ) ) |
9 |
5 6 7 8
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 − 𝑌 ) = ( 𝑥 − 𝑦 ) ) |
10 |
1 2 3 4
|
lsmelvalm |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 − 𝑌 ) = ( 𝑥 − 𝑦 ) ) ) |
11 |
9 10
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |