Metamath Proof Explorer


Theorem lsmelvalmi

Description: Membership of vector subtraction in subgroup sum. (Contributed by NM, 27-Apr-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelvalm.m = ( -g𝐺 )
lsmelvalm.p = ( LSSum ‘ 𝐺 )
lsmelvalm.t ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
lsmelvalm.u ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
lsmelvalmi.x ( 𝜑𝑋𝑇 )
lsmelvalmi.y ( 𝜑𝑌𝑈 )
Assertion lsmelvalmi ( 𝜑 → ( 𝑋 𝑌 ) ∈ ( 𝑇 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lsmelvalm.m = ( -g𝐺 )
2 lsmelvalm.p = ( LSSum ‘ 𝐺 )
3 lsmelvalm.t ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
4 lsmelvalm.u ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
5 lsmelvalmi.x ( 𝜑𝑋𝑇 )
6 lsmelvalmi.y ( 𝜑𝑌𝑈 )
7 eqidd ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) )
8 rspceov ( ( 𝑋𝑇𝑌𝑈 ∧ ( 𝑋 𝑌 ) = ( 𝑋 𝑌 ) ) → ∃ 𝑥𝑇𝑦𝑈 ( 𝑋 𝑌 ) = ( 𝑥 𝑦 ) )
9 5 6 7 8 syl3anc ( 𝜑 → ∃ 𝑥𝑇𝑦𝑈 ( 𝑋 𝑌 ) = ( 𝑥 𝑦 ) )
10 1 2 3 4 lsmelvalm ( 𝜑 → ( ( 𝑋 𝑌 ) ∈ ( 𝑇 𝑈 ) ↔ ∃ 𝑥𝑇𝑦𝑈 ( 𝑋 𝑌 ) = ( 𝑥 𝑦 ) ) )
11 9 10 mpbird ( 𝜑 → ( 𝑋 𝑌 ) ∈ ( 𝑇 𝑈 ) )