| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmfval.v | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | lsmfval.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | lsmfval.s | ⊢  ⊕   =  ( LSSum ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | lsmvalx | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑇  ⊆  𝐵  ∧  𝑈  ⊆  𝐵 )  →  ( 𝑇  ⊕  𝑈 )  =  ran  ( 𝑦  ∈  𝑇 ,  𝑧  ∈  𝑈  ↦  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑇  ⊆  𝐵  ∧  𝑈  ⊆  𝐵 )  →  ( 𝑋  ∈  ( 𝑇  ⊕  𝑈 )  ↔  𝑋  ∈  ran  ( 𝑦  ∈  𝑇 ,  𝑧  ∈  𝑈  ↦  ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑦  ∈  𝑇 ,  𝑧  ∈  𝑈  ↦  ( 𝑦  +  𝑧 ) )  =  ( 𝑦  ∈  𝑇 ,  𝑧  ∈  𝑈  ↦  ( 𝑦  +  𝑧 ) ) | 
						
							| 7 |  | ovex | ⊢ ( 𝑦  +  𝑧 )  ∈  V | 
						
							| 8 | 6 7 | elrnmpo | ⊢ ( 𝑋  ∈  ran  ( 𝑦  ∈  𝑇 ,  𝑧  ∈  𝑈  ↦  ( 𝑦  +  𝑧 ) )  ↔  ∃ 𝑦  ∈  𝑇 ∃ 𝑧  ∈  𝑈 𝑋  =  ( 𝑦  +  𝑧 ) ) | 
						
							| 9 | 5 8 | bitrdi | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑇  ⊆  𝐵  ∧  𝑈  ⊆  𝐵 )  →  ( 𝑋  ∈  ( 𝑇  ⊕  𝑈 )  ↔  ∃ 𝑦  ∈  𝑇 ∃ 𝑧  ∈  𝑈 𝑋  =  ( 𝑦  +  𝑧 ) ) ) |