Step |
Hyp |
Ref |
Expression |
1 |
|
lsmfgcl.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lsmfgcl.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
3 |
|
lsmfgcl.d |
⊢ 𝐷 = ( 𝑊 ↾s 𝐴 ) |
4 |
|
lsmfgcl.e |
⊢ 𝐸 = ( 𝑊 ↾s 𝐵 ) |
5 |
|
lsmfgcl.f |
⊢ 𝐹 = ( 𝑊 ↾s ( 𝐴 ⊕ 𝐵 ) ) |
6 |
|
lsmfgcl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
|
lsmfgcl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
8 |
|
lsmfgcl.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
9 |
|
lsmfgcl.df |
⊢ ( 𝜑 → 𝐷 ∈ LFinGen ) |
10 |
|
lsmfgcl.ef |
⊢ ( 𝜑 → 𝐸 ∈ LFinGen ) |
11 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
13 |
3 1 11 12
|
islssfg2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑈 ) → ( 𝐷 ∈ LFinGen ↔ ∃ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = 𝐴 ) ) |
14 |
6 7 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∈ LFinGen ↔ ∃ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = 𝐴 ) ) |
15 |
9 14
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = 𝐴 ) |
16 |
4 1 11 12
|
islssfg2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑈 ) → ( 𝐸 ∈ LFinGen ↔ ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 ) ) |
17 |
6 8 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ∈ LFinGen ↔ ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 ) ) |
18 |
10 17
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 ) |
20 |
|
inss1 |
⊢ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ⊆ 𝒫 ( Base ‘ 𝑊 ) |
21 |
20
|
sseli |
⊢ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) → 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ) |
22 |
21
|
elpwid |
⊢ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) → 𝑎 ⊆ ( Base ‘ 𝑊 ) ) |
23 |
20
|
sseli |
⊢ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) → 𝑏 ∈ 𝒫 ( Base ‘ 𝑊 ) ) |
24 |
23
|
elpwid |
⊢ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) → 𝑏 ⊆ ( Base ‘ 𝑊 ) ) |
25 |
12 11 2
|
lsmsp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑎 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑏 ⊆ ( Base ‘ 𝑊 ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) = ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑎 ∪ 𝑏 ) ) ) |
26 |
6 22 24 25
|
syl3an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) = ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑎 ∪ 𝑏 ) ) ) |
27 |
26
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) = ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑎 ∪ 𝑏 ) ) ) |
28 |
27
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ) → ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) ) = ( 𝑊 ↾s ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑎 ∪ 𝑏 ) ) ) ) |
29 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ) → 𝑊 ∈ LMod ) |
30 |
|
unss |
⊢ ( ( 𝑎 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑏 ⊆ ( Base ‘ 𝑊 ) ) ↔ ( 𝑎 ∪ 𝑏 ) ⊆ ( Base ‘ 𝑊 ) ) |
31 |
30
|
biimpi |
⊢ ( ( 𝑎 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑏 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑎 ∪ 𝑏 ) ⊆ ( Base ‘ 𝑊 ) ) |
32 |
22 24 31
|
syl2an |
⊢ ( ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ( 𝑎 ∪ 𝑏 ) ⊆ ( Base ‘ 𝑊 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ) → ( 𝑎 ∪ 𝑏 ) ⊆ ( Base ‘ 𝑊 ) ) |
34 |
|
inss2 |
⊢ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ⊆ Fin |
35 |
34
|
sseli |
⊢ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) → 𝑎 ∈ Fin ) |
36 |
34
|
sseli |
⊢ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) → 𝑏 ∈ Fin ) |
37 |
|
unfi |
⊢ ( ( 𝑎 ∈ Fin ∧ 𝑏 ∈ Fin ) → ( 𝑎 ∪ 𝑏 ) ∈ Fin ) |
38 |
35 36 37
|
syl2an |
⊢ ( ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ( 𝑎 ∪ 𝑏 ) ∈ Fin ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ) → ( 𝑎 ∪ 𝑏 ) ∈ Fin ) |
40 |
|
eqid |
⊢ ( 𝑊 ↾s ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑎 ∪ 𝑏 ) ) ) = ( 𝑊 ↾s ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑎 ∪ 𝑏 ) ) ) |
41 |
11 12 40
|
islssfgi |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑎 ∪ 𝑏 ) ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑎 ∪ 𝑏 ) ∈ Fin ) → ( 𝑊 ↾s ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑎 ∪ 𝑏 ) ) ) ∈ LFinGen ) |
42 |
29 33 39 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ) → ( 𝑊 ↾s ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑎 ∪ 𝑏 ) ) ) ∈ LFinGen ) |
43 |
28 42
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ) → ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) ) ∈ LFinGen ) |
44 |
43
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) ) ∈ LFinGen ) |
45 |
|
oveq2 |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) = ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) ) |
46 |
45
|
oveq2d |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 → ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) ) = ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) ) ) |
47 |
46
|
eleq1d |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 → ( ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) ) ) ∈ LFinGen ↔ ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) ) ∈ LFinGen ) ) |
48 |
44 47
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 → ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) ) ∈ LFinGen ) ) |
49 |
48
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ( ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑏 ) = 𝐵 → ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) ) ∈ LFinGen ) ) |
50 |
19 49
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) ) ∈ LFinGen ) |
51 |
|
oveq1 |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = 𝐴 → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) = ( 𝐴 ⊕ 𝐵 ) ) |
52 |
51
|
oveq2d |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = 𝐴 → ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) ) = ( 𝑊 ↾s ( 𝐴 ⊕ 𝐵 ) ) ) |
53 |
52
|
eleq1d |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = 𝐴 → ( ( 𝑊 ↾s ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) ⊕ 𝐵 ) ) ∈ LFinGen ↔ ( 𝑊 ↾s ( 𝐴 ⊕ 𝐵 ) ) ∈ LFinGen ) ) |
54 |
50 53
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = 𝐴 → ( 𝑊 ↾s ( 𝐴 ⊕ 𝐵 ) ) ∈ LFinGen ) ) |
55 |
54
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝒫 ( Base ‘ 𝑊 ) ∩ Fin ) ( ( LSpan ‘ 𝑊 ) ‘ 𝑎 ) = 𝐴 → ( 𝑊 ↾s ( 𝐴 ⊕ 𝐵 ) ) ∈ LFinGen ) ) |
56 |
15 55
|
mpd |
⊢ ( 𝜑 → ( 𝑊 ↾s ( 𝐴 ⊕ 𝐵 ) ) ∈ LFinGen ) |
57 |
5 56
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ LFinGen ) |