Step |
Hyp |
Ref |
Expression |
1 |
|
lsmfval.v |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
lsmfval.a |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
lsmfval.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
4 |
|
elex |
⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = 𝐵 ) |
7 |
6
|
pweqd |
⊢ ( 𝑤 = 𝐺 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝐵 ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝐺 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = + ) |
10 |
9
|
oveqd |
⊢ ( 𝑤 = 𝐺 → ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
11 |
10
|
mpoeq3dv |
⊢ ( 𝑤 = 𝐺 → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) |
12 |
11
|
rneqd |
⊢ ( 𝑤 = 𝐺 → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) |
13 |
7 7 12
|
mpoeq123dv |
⊢ ( 𝑤 = 𝐺 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
14 |
|
df-lsm |
⊢ LSSum = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) |
15 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
16 |
15
|
pwex |
⊢ 𝒫 𝐵 ∈ V |
17 |
16 16
|
mpoex |
⊢ ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ∈ V |
18 |
13 14 17
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( LSSum ‘ 𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
19 |
4 18
|
syl |
⊢ ( 𝐺 ∈ 𝑉 → ( LSSum ‘ 𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
20 |
3 19
|
eqtrid |
⊢ ( 𝐺 ∈ 𝑉 → ⊕ = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |