| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmub1.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 2 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝐺 ∈ Grp ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 5 |
4
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 |
4
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ⊆ 𝑈 ) |
| 10 |
4 1
|
lsmless2x |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 11 |
3 6 8 9 10
|
syl31anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |